(안녕맨)<화요 수학칼럼 - 적분이란? >
게시글 주소: https://video.orbi.kr/0008782522
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
9. 정적분의 동치 변형 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8742407&showAll=true
10. 외워두면 좋은 면적 공식 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8759526&showAll=true
11. 2차 곡선에서 접선의 방정식 공식화 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8766382&showAll=true
12. 미분이란? : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8776957&showAll=true
cf) <8월 1일 대치동 오르비 학원 개강 안내>
8월 1일 (다다음주 월요일)부터 월수금 8주 커리로 안녕맨의 끝장인강 총정리 & 안녕맨의 손으로 만든 2017 기출시험지 10회 자기시험지 만들기 현강이 시작합니다
관리자님 말씀으로는 오르비 역대 최고의 시설이라고 하네요 (완전 모던하게 꾸몄대요 ㅎ)
학원 위치는 대치동 은마아파트 입구 사거리 교차로 근교 메인대로변에 있습니다
(교차로에서 대치사거리 쪽으로 걸어서 3분거리 ) 주소는 대치동 931-22
시간은 문과 6시~8시 // 이과 8시~10시 구요 한시간은 끝장인강 잠시 휴식후 나머지 한시간은
기출시험지 풀이 하는 수업을 하게 됩니다
8월 1일 첫수업은 무료 강의 인데 그날 오시는분들은 반드시 안녕맨의 손으로 만든 2017 대 수능대비 기출시험지 1회를 풀고 오셔야 합니다 (이과는 http://class.orbi.kr/class/776/ ,
문과는 http://class.orbi.kr/class/777/ 여기서 자료 다운 받으시고 진행하시면 됩니다)
당일 수업 교재는 임시로 대여 해 드립니다(물론 수강 등록을 하시면 무료로 드립니다)
참고로 무료 개강 수업 후 조 추첨해서(네이버 사다리를 돌릴거에요) 문이과 각각 한분씩
컬쳐랜드 문화상품권 1만원권 1매를 선물로 드릴거에요 ㅎ
자세한 정보는 http://class.orbi.kr/group/85/ 여기서 확인하시면 됩니다
아무쪼록 많이 참석해 주셨으면 하는 바램입니다 감사합니다 꾸벅~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
돈때매 고민되는데 수험생활에 투자한다치고 사는게 낫겠죠? 책값 패스값 하니 돈이...
-
마스크라도 끼고 다녀야하나 싶음.. 어제 밤에 산책갓다가 호흡곤란 오는줄
-
진학사 0
진짜 화나게 하지 마 내가 되는 의치대가 하나도 없을 아니 한의대도 1개밖에...
-
www.instagram.com/ijeoxen56/
-
분명 현장 시험지엔 4번이라한것같은데 omr보고 한 가채점표엔 5번이라돼있네 탐구...
-
04년생이고 곧 군대갈 예정입니다 군대에서 최대한 수능공부 해볼 테지만 많이는...
-
안녕하세요. 이 글은 수능 물리학2 선택을 고민하는, 혹은 이미 하기로 마음 먹은...
-
화2 생2 <== 얘네는 겉보기 난이도가 너무 괴랄함 5
투과목 느낌좀 보려고 서점가서 기출문제집 보고왔는데 얘네 둘은 그냥 30분 안에...
-
모닝 우동 4
냠냠
-
나쁜 사람이에요
-
잠은 확 깨네
-
폰켰는데 주식 44% 꼴박해서 심장멎을뻔했음 버그더라
-
수시 아니엇으면 ㄹㅇ 대학 못갈뻔햇다ㅠㅠㅠㅠㅠㅠ 그날 컨디션도 컨디션이었는데...
-
왜 저딴 식으로 글을 쓰는지 모르겠네 일단 스카이 가고 보세요 좀.. ㅋㅋ 뭔...
-
김승리 뜨면서 뭔가 한번 더 하지 않을래 라는 표정으로 보는것 같아서 킹받네
-
경북대로박박간다 0
박박
-
ㄹㅇ수능타이머인가
-
(서울대 커뮤니티 스누라이프) 서울대 25학번 오픈채팅방을 사전 소개합니다. 0
안녕하세요. 서울대 커뮤니티 SNULife 오픈챗 준비팀입니다. 서울대 25학번...
-
피곤한 아침 21
-
충격적이게도 진짜임
-
18학번으로 정시 지방교대 입학해서 교사 3년차에 군대에 와있는...
-
암튼 가는 중
-
면접 준비하고 있는데 질문하실 거 같아서.. 의대 정원 증원 말고는 또 없을까요?...
-
D-355 0
기릿?
-
사문 4
요즘 타임어택 어떰
-
기상 6
-
할 수 있습니다!
-
고속 누백 라인 1
백분위합 밑이 누백인가요 아니면 표점합 밑이 누백인가요?? 그리고 저정도 누백이면...
-
션티vs이명학 0
대성패스 있고요 영어선생님 아직못고르고있는데 두 선생님분들 해석 스타일이 어떻게...
-
권용기 한명만 들으려고 대성패스 결제할정도로 메리트가있나요?
-
공군: 복무 기간이 육군보다 3개월 더 기니까 3개월동안 후회함 육군:18개월동안 후회함
-
부대 수험표 0
부산대 수험표 거기서 뽑을 수 있나요? 집에 두고 옴;;;
-
1월 1일 지나도 졸업증명서 필요한가요 ㅠㅜ
-
학생증 ㅇㅈ 15
신학생증 너모 예쁘고… 이건 똥구데기 기존학생증ㅋ
-
진짜 개병신직장일수록 우리 직장에 ~대학 몇명있다 이딴 개소리 엄청 함 아니 시발...
-
얼버기 4
얼리버드 기상
-
주말 통삭제되는게 진짜 말이안됨
-
작년,재작년에 대강 예비 50번까지 돌았는데 올해 최저 3합7 생겨서 예비 덜...
-
요약 : 놔두면 어차피 죽는 6살 장중첩증 소장괴사 환자를 수술했으나 안타깝게...
-
세지1등급, 지구2등급 가능할까요? 세지는 1등급 뜬다하면 백분위 97 이상...
-
화작미적물1화1 91 98 1 77 70(메가기준) 인데요 ㅠㅠ 이대 컴공 논술...
-
저 사람 왜케 좋지 10
사랑에빠짐
-
한줄요약 : 장이 썩어들어가 당장 죽기 직전인 신생아를 일반외과 의사가 수술해서...
-
이거 메가 경쟁자 대비 성적분포로 전체 채점결과를 알순없나? 3
본인 원점수를 조정하면 그 원점수에 따른 경쟁자의 성적분포가 나오는데 그럼 내...
-
언매, 미적의 메가스터디 채점자 평균치의 상대점수는 대략 비례하는 경향이 있음. 내...
-
그냥 따라하기만 함
-
어디가 더 좋을까요? (참고. 한양대 전기는 전자공학이 아님)
-
얼버기 5
죠은 아침
안녕맨님 궁금한게있는데
함수 f a부터 b까지 의넓이가 왜 f를적분한 함수의
함숫값의 차로 구할수있나요?
예를들면 일차함수의 면적을구하는데 이차함수의
함숫값의 차가 일차한수의 면적이되는게 신기해요
일차함수의 함수값은 길이구요 면적은 길이를 두번곱해서 구해요 길이가 1차면 면적은 길이의 제곱이니깐 2차가 되요
이해가 잘않되요
자세히 설명 드릴게요
인테그랄은 원래 무한급수죠 연속된 무한개의 값을 더할때 쓰는거구요
우선 구분구적을 이해할때 길이가 합해서 면적이 되는게 절대 아닙니다
즉 f(x)를 더해서 면적을 만드는게 아니라 아주 얇은 직사각형을 무한개 더해
서 면적을 구한다고 생각하시면 되요
이때 세로에 해당되는게 f(x)구요 아주 작은 가로에 해당되는게 dx 입니
다 직사각형은 가로와 세로를 곱하는데
여기서 가로에 해당되는 dx가 x에 관한 1차식이라고 생각하시면
실제 면적을 구할때는 f(x)보다 한차수가 높아지죠 (적분하게 되면 차수
가 한차수 높아집니다) 그래서 면적이 그렇게 되요
그니깐 함수값이 1차이면 면적은 2차식이 되고
함수값이 2차이면 면적은 3차
즉, 함수값보다 차수가 한차수 높은 면적으로 나옵니다
서로 빼는거는 구분구적의 계산이 위의 칼럼대로 부정적분해서 양끝값더
한것의 차이라는게 증명됬기 때문에 그렇게 쓰는거구요
그거 교과서에 있어요
쉽게 생각하면 되요
F(x)라는것은 0부터 x 까지 f(x) 그래프 아래의 면적을 의미해요
그러니 a부터 b까지의 면적은 0부터 b까지의 면적에서 0부터 a까지의 면적을 빼면 되므로 F(b)-F(a) 가 되는거죠
대학 미적분학1에서 다루는 내용이군요
hello man(bjh)쌤 홧팅!!!! ^^
감쌈다 정답이오쌤님ㅎ
글씨옆에 잇던게 눈에익어서 봣더니 벤젠(C6H6)였어....
와..
미분은 그냥 괜찮네이랬는데
적분은 내가 강의할때 하는말 다담겨있네ㄷㄷ추천합니다 글 정말 잘읽었어요
감사합니다 ㅎ
공감 ㅋㅋㅋㅋ 과외준비할때 다른것도 읽어보구 참고해야겠어요 안녕맨쌤파이팅하세요!
네 약간이라도 도움이 됬으면 좋겠습니다ㅎ 감사합니다
인티그럴?
쌤 궁금한게 책에 나오지도 않았는데
어떻게 깊이있는 개념을 터득하신겁니까?ㅠ
완죤 부럽습니다.. 책에나온개념도
완전히 이해못하는디ㅠ
구지 말하자면 연륜이죠 ㅎ
제가 처음 과외했던 친구가 78년생 고3 3명이었어요 ㅎ
그 이후 5년정도 휘트니스센터할때 빼고는 수학을 놓은적이 없네요 ㅎ
구지--->굳이..ㅜㅜ
아 넵 ㅠㅠ
좋은 글 감사합니다 ㅎㅎ
.도움이 됬다니 다행이네요 ㅎ