(안녕맨)<수요 수학칼럼- 정적분의 동치 변형>
게시글 주소: https://video.orbi.kr/0008742407
1. 등차수열의 일반항 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8607869&showAll=true
2. 이과전용 칼럼- 역함수 적분법 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8613037&showAll=true
3. 등차등비수열의 합의 또다른 고찰 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8643346&showAll=true
4. 주기와 대칭을 나타내는 함수식 총이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8647859&showAll=true
5. 3가지 표준편차 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8669293&showAll=true
6. 점의 이동과 그래프의 이동의 차이 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
7. 경우의수 접근방법에 대해서 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8691610&showAll=true
8. 무한급수의 정적분 표시 총 이론 : http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8717582&showAll=true
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
하 기분이 좋구만요
-
기준 -ㅈ반고에서 중앙대 -문과는 상경, 이과는 공대
-
덕성여대 0
덕성여대 논술 쓰신분 문자 오셨나요?? 저만 안온거 같아서요
-
숨은 냥이 찾기 2
애옹
-
다른 과목 개잘하는데 영어만 못하시는분 있나 갑자기 궁금함
-
이제 수능도 끝났겠다 양주 도전
-
학벌땜에 입구컷or 발목잡히는 라인의 학교들임? 중간공(산업공 등) 기준으로
-
지켜봐주세요 저의 진심!
-
도쿄대 의대+사시패스가 푸는 한국 수능수학..jpg 0
https://youtu.be/QYzU3CuhFA0?si=FM-smSG2Gn92x6f...
-
2024년 한국이공학진흥원의 ‘제1기 IPESK 차세대 공학자’ 학교별 리스트...
-
24수능 국4 수3임 올해수능 x 내년 초 입대하고 수능 볼 예정인데 입대 전까지...
-
근데 이래도 서울대가 안돼??
-
공대 희망하긴하는데 일단 서성한 가능할까요ㅜ
-
좋겠다
-
확통 3컷 2
부산교육청은 76점으로 예상햇던데 이것보다 더 올라갈거라고 생각하시나요..?...
-
화미영물지 입니다 특이사항?으로는 수학이 낮3이고 지구가 높2입니다결국 성적 발표...
-
올해 단과 잠깐 다녔는데 거기서 고딩때 같은반이었던 애 조교로 마주쳤다…
-
갯마을에서 매우잘생긴우산을 쓰고 걸어가고있었다 사내는 미스터방과 함께보낸...
-
근데 오늘까지 제출해야 할 레포트(동아리 비스무리)가 2개 하나는 5장은 써야하는데...
-
여쭤볼게 있습니다…
-
재수비용 장기매매 12
우리집은 가난한편임 그래서 이번에 진짜 잘봤어야했는데 너무 긴장하는 바람에 영어를...
-
헌혈 가는중이에요 20
처음이라 너무 무서움..
-
연원의논 정답 1
친구가 물어봐달래요 전암것도모름
-
한 명은 너무 알파메일이라서 놀랐고 한 명은
-
공대 가는데 사탐런 해도되는건 뭔 취지인거지
-
20대 갈아넣는다는거 14
정확하게는 20대니까 갈아넣을 수 있는거임 30대면 갈아넣지도 못하더라 적당히 인생...
-
한문입니다 아셨죠 제2외국어 내신때 했다? 그런거 필요 없습니다 무조건 한문입니다...
-
생명 1번문제 이거 멘델집단 아니어도 풀 수 있는건가요? 헷갈려서 어떻게 풀지 잘 모르겠던데
-
난
-
여자중에 2
다리떠는 사람을 본 적이 없음 남자애들이 산만해서 다리를 많이 떠나?
-
지구과학 만점 1
지구과학 만점자 몇명이나 될까요 만점이신 분 계시면 댓글좀 달아주세요
-
영화보러가야징 9
재밌겠다
-
생명 고정1인데 지구가 ㅈ망해서 삼수땐 경제하려 하는데 ㄱㅊ? 경제가 아무리...
-
화1 망한 것 같아서 급하게 지구로 갈아탔습니다. 예비 고3이고 현강 겨울방학에...
-
꼬라지가 ㅈ같아서 그냥 포기했다 아.
-
머가 더 어렵다 보심? 저는 작수 22 28 29 30틀 올수 22틀인데 수학실력이...
-
예비 고3이고, 국어 평균적으로 2등급 정도 나옵니다. 현대시, 고전시가, 독서...
-
왜 이게 집에 있지..
-
농심오피셜떴네 1
라인업 킹겐 실비 피셔 지우 리헨즈 ㄷㄷ
-
아 이거봐 개웃기다 ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 현우진한테 2시간 욕 먹기 vs 정승재 노래...
-
수특린데 몇년도 수특일끼요....
-
금요일 밤 0
좋아요
-
백분위 91 97 2 61(4컷) 94 쩝..
-
미친놈아
-
뭉탱이 0
.
-
심심한데 헤겔정반합으로 증명해낸 세계속 닉슨쇼크를 거쳐 발전한 카메라 차량주위기술을...
-
내가 84니까. 반박 안받습니다 내 말이 다 맞음
-
드릴은 매년 2
전문항 신규인가요?
-
태블릿에 키보드 마우스 같이 들고다니는 전제 하에 ㅇㅇ
오오 저번에 ㅎ좌표이동에 연결되는 내용이네요
그러네요 평행이동 부분에서 적분구간은 점이고 피적분 함수는 그래프죠 ㅎ
그래프는 선대칭인거죠? 대칭의 과정이 이해가 잘안가네요ㅠㅠ
이동의 대상에 따라 점의 이동과 그래프의 이동이 있구요
이동하는 방법에 따라 평행이동과 대칭이동이 있습니다
선대칭은 대칭이동중에 하나구요(대칭이동은 대표적으로 점대칭 선대칭이 있어요)
그니깐 점의 선대칭이 있을수가 있고 그래프의 선대칭도 존재합니다
점의 이동과 그래프의 이동은 이동하는 방법자체가 확연히 차이가 있는데
점은 자리가 변하는거고 그래프는 변수를 변하는거에요 완전히 이동방법이 다릅니다
좀 더 자세한 칼럼은
http://orbi.kr/bbs/board.php?bo_table=united&wr_id=8685920&showAll=true
참조하시면 됩니다
잘읽었습니다ㅎ
읽고난 후 조금 더 생각해봤는데요, 대칭이 되는 상황이 만들어지기 위해선 같은 함수가 평행,축,점대칭이동 등으로 이동된 상태여야 한다는거 구요.
그리구 포개서 일치하게 만들 수 있는 방법이 점대칭, 선대칭 두가지가 있는거라고 생각했습니다.
f (-(x-a-b)) 는 y축대칭과 x:a+b 평행이동으로 이동된 상태인데
그래프로 봤을땐 선으로 포개지고, 이동과정을 봤을땐 y축대칭(선대칭인데 x축에 수직)은 선대칭으로 포개지느냐 점대칭으로 포개지느냐를 결정하게 되는거 같고 a+b 평행이동은 어느위치에서 대칭이되느냐를 결정하는것 이라고 생각했습니다.
y축대칭에 x축에 수직인 선대칭인걸 써놓은건 x=a+b/2 대칭도 같은상황이기 때문이에요.
그러면 x,y축대칭,평행이동된 함수는 선대칭관계이고 y=x,-x대칭,원점대칭된 함수는 점대칭관계인지 궁금합니다..."-"
우선 선대칭과 점대칭을 구분하실때
선대칭은 수직 이등분선과 관련이 있구요 점대칭은 중점과 관련이 있어요
보통 대칭된 그래프나 점을 찾을때도 이 이론을 이용해서 구합니다
대표적인 선대칭 함수가 2차 함수(대칭축에 대칭)구요 점대칭 함수가 유리함수 (점근선의 교점에 대해 대칭)에요
그리고 쉽게 생각해서 축도 직선입니다 x축은 y=0 이라는 직선, y축은 x=0
이라는 직선
그니깐 x축 y 축 , y=x , y=-x 대칭은 다 선대칭을 의미하죠
근데 x축도 대칭되고 y 축도 대칭되는 경우는 원점 대칭이 되므로 점대칭이라고 해도 되는거구요
이것만 봤을때도 어떤 함수를 여러번 대칭하면 점대칭이 될수도 있고 선대칭이 될수도 있는데 어떤 원칙이 있는게 아니라 그때 마다 특이한 결론이 나올수 있다고 생각해요
아하 이해됐어요! 고민하는동안 어렴풋이 넘어간내용을 다시 짚고갔네요
감사합니다~^^
이해가 됬다니 다행이네요
분석하는 모습 정말 보기 좋습니다 화이팅!!
(밑에거는 중복된 코멘트 ㅎ)
선생님 칼럼을 모두 모아서 볼 수 있도록 링크를 해 주시면 감사하겠습니다
선생님 칼럼이 좋은데 모아보기 불편해서 그렇습니다
네 다음에는 링크 걸게요
우선 #안녕맨 으로 검색하시면 그동안 했던 칼럼 보실수 있습니다