[박주혁t] 7월 교육청 문과 30번, 3년전 문제?
게시글 주소: https://video.orbi.kr/0008726495
이번 나형 30번 문제는, 이과생들이었다면 어디선가(?) 풀어보았을 법한
문제라고 생각됩니다. 가까이는 이번 6평 30번의 연계문제로 추정되는 EBS문제가 그러하죠.
그런데 이게 문과 문제로 나오게 되면,
상당수 학생들에겐 어렵게 느껴지게 될 거라고 봅니다.
그리고 제 생각은, 30번자리엔 어울리지 않으나, 미적분 문제의 “좋은훈련”으로는
꽤나 매력적인 소재임에는 틀림없는 듯 합니다.
문제는 이겁니다. (안푸신 분들은 풀어보시고)
그리고 교육청 해설은 이겁니다.
멋집니다. 역시 교육청이네요.
(반어법은 아닙니다ㅋ)
그런데, 오프라인 해설을 하다보니 저 해설자체를 매우매우매우매우 싫어하더라고요.
그리고, 저렇게 풀이를 했는데, 어디선가 계산이 틀려서 오답이 난 친구들도 꽤나
있었습니다.
뭐 근데, 이미 잘하시는 분들은 이렇게 푸셨겠지만,
3,4차 함수의 다항함수 미적분 문제는 꽤 높은 비율로, 그래프를 활용할수 있습니다.
(가)(나) 조건에서
f(x)는 최고차계수가 1인 4차함수, (1,1)을 지나고 그 점에서의 접선의 기울기가 1이네요.
그렇다면, 다음 그림을 예상할 수 있습니다.
물론, 다른방식으로 접할수도 있는데요. 조금만 더 생각해보면 아님을 알 수 있죠.
이유는,
이 조건 때문입니다. 이 조건해석도 조금만 생각하면 되는데,
n=0을 대입하면 g(x)=f(x) (0≤x<1) 이지요?
n=1을 대입하면, g(x)=f(x-1)+1 (1≤x<2)가 되고, 결국 그래프를
x방향으로 1, y방향으로 1만큼 평행이동 한다는 이야기입니다.
그렇다면, (1,1)에서 일어난 상황이 (2,2)에서도 일어나야 하고,
결국 (0,0)에서의 상황이 (1,1)에서 일어나는 것이 됩니다.
그래야,
라는 조건에 부합하게 됩니다.(결국 직선에 접한다는 이야기)
그러면 자연스럽게 이러한 그래프가 나오게 됩니다.
결국, (-1,5)의 구간에서 이런식으로 그려진다는 이야기가 되고,
주어진 적분은
이렇게 됩니다.(1+2+3은 아래 정사각형넓이)
그러면 0≤x<1 구간에서의 함수를 구하면, (0,0), (1,1)에서 y=x와 접하므로,
답은 137입니다.
그런데, 이렇게 해설을 하는 와중에,
‘이거 뭔가 어디서 본듯한 문제인데?’
‘이거랑 같은 그래프를 그린적이 있었던 것 같은데??‘
그렇습니다. 이 문제입니다. (헉 3년전 문제)
[2013 이해원모의 2회 21번]
기본적으로 같은 구조의 문제이고,
ㄷ 보기에서 다른내용을 공부할 수 있는, 좋은 문제입니다~
(해설은 다음주 오픈하는 7월교육청 해설강의 나형 3강에서 합니다~)
포모나 해모에서는 이런일이 꽤 자주 일어납니다.
이제는 뭐 그닥 놀랍지도 않네요.
역시, 믿고푸는 해모^^ 올해도 꼭 풀고 갑시다!!
---------------------------------------------------------
위의 그래프는 사실 많이 왜곡된, 제가 그냥 그린 그래프고요^^
댓글에 써 주셨듯,
실제그래프는 이렇게 그려집니다. (0≤x<1)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
전체지원자 통계도 중요한가요
-
빨리 내일 되라 0
주식 시작하고 주말에는 월요일 23시 30분만 기다리네
-
마법의 소라고둥에게라도 물어보고시픔..
-
정시 알못인데요. 재수한다면 사탐런을 하고싶어서요. 국어, 수학(미적), 영어,...
-
죄송합니다 0
저도 뉴스댓글이나 기타 의견들 보면서 조종사 탓하는것도 부정적으로 보았고 제주항공...
-
적고가실래요
-
산하고 바다를 거치셈뇨 보통 혼자 여행 지루해지는 경우가 많은데 등산하고 저녁먹고...
-
ㅈㄱㄴ
-
작년엔 간쓸개 풀었는데 이제 재수라 따로 사여댐요
-
원숭이가 이상한소리를 지르네~
-
복전이나 전과도 고려하면 어떻게 해야할지 잘 모르겠어요 ㅠㅠ 반수할 생각도 있는데...
-
어떻게 버는거임 글 하나에 50덕 댓글 하나에 5덕 아닌가?
-
해야하나요? 아님 워크북 스텝2만풀까요?
-
걍 ㅅㅂ 연애 안할란다 뭐만 하면 깬대 단풍손이라서 깨고 손 작아서 짜증나고 170...
-
혼놀 해보신 분 13
갑자기 내일 학교째고 혼놀해보고싶음
-
올해 첨 보러가려고했는데
-
그럴수가없는현실
-
그 느낌 너무 좋지 않아요? ㅎㅎ
-
오늘만 메인 3번 갔네 13
오르비 줄여야겠다
-
+1할까 8
-
이런건 보통 이과에서 교차하는거일텐데전자라 하는거는 보통 가서 뭘하겠다는 계획을...
-
갈때가 되었구나 6
안녕히계세요
-
[속보]'여객기 추락' 탑승자 181명 중 생존자 2명 제외 '모두 사망' 15
[속보]'여객기 추락' 탑승자 181명 중 생존자 2명 제외 '모두 사망'
-
20명 이상 모집하는 과인데 작년에 경쟁률 6대 1이었고 지금은 표본이 덜 차서...
-
손을 다쳤음 3
그래서 내일 클라이밍 가고 싶은데 못 감
-
사문인강 1
ㅊㅊ좀 해주세여
-
왜 분캠 본캠 학과 논술을 다 본캠에서 보는거임? 분캠의 학과면 분캠에서 쳐야되지 않음?
-
솔직히 홍콩 가보고 싶긴함
-
정병호쌤 한 달만 비대면 현강 듣고 싶운뎅, 두각 학원에 비대면현강 ㄱㄴ하냐고...
-
적군이다
-
학교 출석관련 0
이미 2학기 성적통지표 내일 학교 안가면 기록 남나요?
-
날 사랑 했니? 너를 사랑하게 했니?
-
본인 지구 백분위 99지만 나머지 과탐 다 고자수준입니다 아무리 잘봐도 2등급이라...
-
그러다보니 딱히 미련도 없고 이제 잡담 태그 안달고 막 쓰려고요.... 불편하면 팔취해주세요
-
꼭 잇올이나 러셀 같은데로 가야하나요?
-
자해같은거 한적없고 언제다쳤는지 기억이 안나는데 칼에 베인자국처럼 흉터남아있음 크게...
-
윤알라가 이상한부적을 태우네~
-
토익 900점 1
얼마나 걸릴까요? 단어책 3회독하고 기본서 1회독하면 나올까요? 수능 영어...
-
디엠오는 양이 7
본계 < 옯스타면 위기임?
-
인하대생 과외 2
수학 원툴인데 과외 구해지나요?...
-
세지 선행할건데 0
이기상쌤 내신할까 수능대비로 할까 당연하긴한데 수능대비에 내신이 포함되어 있다고는 함 예비고2임
-
진학사로 이사완 2
다음엔 어디로 가지
-
블라인드만 봐도 소개글에는 전국 180 훈훈남,관리하는 훈훈녀 다 모여있는 거처럼...
-
ㅇㄷ가십니까
-
평소에도 잘만 풀리던 3점짜리 정답률 높은 문제들이 왜 안풀리지 ㅅㅂ 요즘 잠 쫌...
-
강기원 쌤 반이랑 6모 스벅빵 뜨고 싶다고 우리한테 동의 구하는데 차마 대답할 수 없었음
-
인지도 하니까 생각난 건데 '모르다'의 '르다'는 '알다'인 거 아세요? 5
향가를 보면 고대 국어 시절에는 '모르다'의 활용형을 '毛冬乎'나 '毛冬留' 이런...
-
고대 교과 0
진학사 표본이 텅텅 비어있네 지를까???
딱봐도 (0,1) 적분값이 8/15안나오는데 그래프 모양 잘못구하신듯 ^^
제가 맘대로 그려서 그래요^^
진짜 그래프 개형도 올려놓았습니다~
꼼꼼한 지적 감사해요~
ㅋㅋ 전 이문제 보자마자 15 수b30번 생각났는데...
사실 이과는 생각나는 문제가 많이 있을수 밖에 없어요ㅋ
그런데 제르맹님 레벨 26 부럽네요^^
ㅋㅋㅋ15 수b 6평이라고 쓸려그랬는데 빼먹었었네요. 글 잘보고갑니다. 저 27갔다가 돌아왔어요.... ㅠㅠ
ㅋㅋㅋ 레벨이 오르락 내리락 해요? 몰랐는데ㅋ
저도 몰라요 ㅠㅠ
우와 그냥 식으로만 풀엇는데 그래프로도 풀 수 있다니 ㄷㄷ 좋은거 배워가요 ㅎㅎ
시간단축에 도움이 됩니다^^
선생님 안녕하세요^^ 그래프풀이에 질문이 있어 덧글남깁니다~
사실 문제를 한번 더 검토할 때는 그래프 풀이가 직관적이고 엄밀하지 못하다 생각하여 f (x)-x가 1에서 접하는 정도만 식으로 두고 나머지 x^2+ax+b는 미분가능성의 정의와 거기서 기인되는 연속성 성질을 가지고 미정계수를 소거하는 방식으로 정리해 뒀는데요, 그래프 풀이도 엄밀성은 있는지 궁금합니다.
사실 문과기준 많은 다항함수 미분가능성 문제가 그래프가 꿀인 부분이 있긴 하지만...ㅋㅋ그래도 포카칩 정신을 살려 최대한 엄밀해져보려고 노력중...ㅠㅠ 답변부탁드려요~
괜찮으시다면 한가지 더 여쭤봐도될까요? 가능하시다 하시면 답글로 하나 더 여쭤볼께요~
네, 그런 생각이시라면 잘 하셨습니다^^
포카칩정신은 영원하죠! ~
약간 덧붙이자면, 3,4차 함수의 그래프는 경우의수가 매우 제한적이기 때문에,
문제에서 주어진 상황을 가지고 소거법으로 접근하면 하나만 남는 경우가 대부분
입니다.(이 문제도 그렇고요)
제가 올린 풀이는 답을 바로 찾아 들어갔지만,
실제로 제가 풀때는 접하는 상황을 모두 그려보고 평행이동해서 미분가능한
개형을 찾아서 푼 것입니다. 이렇게 하시면 엄밀함이 모두 해결되는것은 아니지만,
문제를 풀때 오류는 생기지 않게 됩니다.
문제의 상황에 떄라서, 그래프의 소거가 안되는 부분도 있습니다.
기출에서도 있었고요, 이런 상황이라면 그래프 접근보다 수식의 접근이
맞는 풀이입니다.
교육청해설은 이런 측면에서 수식풀이를 잘 써 준거라고 보고요,
그런데 3,4차 미적분 문제를 풀다보면 그래프가 떠오르는 경우가 많기 때문에,
그래프 풀이도 보여드린 것 입니다~
감사합니다!! 아주 명쾌하네요ㅋㅋ
질문드린다는것은 조금 별개의 내용이긴 한데요, 다른 건 아니고재수생이라 올해 새로 들어온 부분에서 논리전개가 막히는 순간들이 있습니다. 특히 평균값정리가 그런데요, 이게 그냥 문제과정중에 쓰일때는 자연스럽게 증명과정중 쓰면서 넘어가게되는데 유형별로 나눠놓은(평균값정리 연습을 위한 문제들)에서는 또 확 와닿지 않는 부분도 있고...어떻게 해야할지 잘 모르겠네요...평균값정리! 어떻게해야할까요..ㅠㅠ 기출로 곱씹어보려하는데 어떤 문제가 있는지도 모르겠네요(어쩌면 15 수b 6 30번 말고는 문과범위 문제가 없을지도...)조금의 조언이라도 부탁드려요 흑...
우선 제가 생각하는 평균값정리가 나형에서 출제될수 있는 유형은 ㄱㄴㄷ문제라고 보고요, 그렇지 않은 킬러문제의 풀이도구로써 사용될 확률은 낮다고 생각합니다.(개인적의견입니다)
그래서 '해석'의 의미로 평균변화율이 나올때, 평균값정리를 같이 떠올려보는것이 좋은 방법이고요, 식변형 중에서도 평균변화율 형태가 나오면 평균값정리를 상각해보시는게 좋을것 같습니다.
올해 처음들어온 거라서,그렇게 크게 걱정은 안하셔도 될 것 같네요~
감사합니다!^^더운 날씨 건강 잘챙기셔요
예전 실모들은 어떻게 구매할수있나요ㅠㅜ
옛날 포모 해모 좋은문제들 풀어보고싶은데
곧 포카칩 N제가 배포됩니다.
올해 해모도 좋은데요^^
8/15 x 4 해서 틀렸어요...좋은 해설 감사합니다
수능에서 나오면 실수 인하시겠네요~^^ 좋은 경험 하셨습니다~
시험때 그래프로 풀어보겠다고 했다가 피를 본 1인.. 많이 노력해야겠어요 ㅋㅋ
아직 시간은 많이 있어요! 연습하면 됩니다~^^
결국은 해모 홍본가여??ㅋㅋㅋ
칼럼입니......쿨럭
와 두번째 풀이 ㄷㄷ
익혀두면 쓸모가 있지요~^^
30맞았는데 14틀림
ㅠㅜ
. .ㅜㅜ
수능에선 맞추자고요^^
와 이렇게 세련된 풀이 개좋음ㅎㅎ
감사합니다~^^
좋은 해설 감사합니다! 제풀이와 완전 똑같은데, 덕분에 확신을 갖게 되었네요^^
참고로 작년 사관학교 기출 A형 17번 문항과도 비슷합니다. 이것보단 쉽지만요..ㅎㅎ
17. 실수 전체의 집합에서 연속인 함수 f(x)가 다음 조건을 만족시킨다.
(가) f(x)=ax^2 (0≤x<2)
(나) 모든 실수 x에 대하여 f(x+2)=f(x)+2이다.
∫1to7 f(x)dx의 값은? (단, a는 상수이다)
네^^ 맞습니다~ 잘하셨네요~
박샘 열심히 연구 하시는 모습 응원합니다.
파이팅요!! ^^
감사해요~
교육청 풀이랑 글씨 한톨 안다르고 똑같이 풀었는데.. 배워갑니다 고마워요
교육청해설처럼 하셨어도 잘하셨습니다^^ 하나 더 알아가는 거죠~
교육청대로 풀었는데 두번째 방법을 떠올리지못했다는건 실력부족이겠죠..??
실력부족은 아니고요^^ 잘하셨습니다~ 그런데 조금 더 공부해두자는 의미로 올렸습니다~