미적분 자작문제
게시글 주소: https://video.orbi.kr/0008204438
갑자기 또 발상이 떠올라서 만들었네요. 마지막에 적분을 하는 발상은 문과가 할 수 없는 부분이지만 나머지 부분은 문과 분들도 하실 수 있으니 많은 지적 부탁드려요..
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
유부초밥마렵노 3
으어
-
진짜 ㅈㄴ 추억이다 ㅋㅋㅋ
-
누가 아깝고 누가 수요마늠?
-
Ova엔딩 좋다 13
세이버!!!
-
왜 합격발표나 추합을 2월에 하지 추합까지 해서 적어도 2월 초에는 끝내주면 좋은데
-
유대종 ovs vs 정석민 매e네
-
승리 ot보는데 1
올해도 말을 잘하시는구나
-
자러 감. 3
눈이 안 떠져요
-
원랜 요약본으로 130곡쯤 집어넣었는데 요약 안하고 다 집어넣어서 200~300곡...
-
토익이랑 이런저런 책 사니까 책 무료가 얼마나 큰 건지 느껴져요
-
team 06인데 40주 한번도 안빠지고 김승리 현강 출석했는데 성적이 크게 오르지...
-
장영준 선생님의 언어학 101을 추천드립니다. 입문서라서 그런지 확실히 좀 책이...
-
사문 최적vs윤성훈 11
정법은 최적 들을건데 사문은 누구 들을지 고민중이에요 최적은 오탈자 많다는 말도...
-
케이온 재밌음? 3
봇치의 대선배라던데
-
리턴!
-
誰かいませんか 2
덕코 선착 1명
-
지금 프사 뭔가 똥테랑 안 어울림
-
안녕하세요 수능 19 27 (28) 29 30 틀렸습니다(19 뺄셈실수, 28...
-
뚝
-
평균 시급이 어느정도됨요..? 생초짜 면접보러오라그랬으면 얼만진 먼저...
-
대박 ㅋㅋㅋ 얼마만이냐 ㅋㅋㅋ
-
야마다 료 9
장발 료
-
기만좀 해볼께요 12
-
지구과학이랑 비교해서 개념량이 얼마나 되나요??
-
님들생각엔 5등급제로 바뀌는데 ㅈ반고 가는거 에바띠인가여 3
애들공부 ㅈ도안하고(내신따기쉬움)생기부개못써줌그냥학종못쓴다봐야함 전교1등이 건대수의대감
-
덕코만 많고 #~#
-
올해 69수 233 뜨고 재수하려는데 현우진 미적 시발점 듣는거 어떻게 생각하세요
-
ebsi 괜찮은 쌤 아시는분 있나요? 없르면 메가대성중에 괜찮은 쌤 추천좀..
-
ㅈㄱㄴ
-
아내는 왜 채식만 고집하게 된거임? 꿈 때문에 그렇게 되는거임?
-
유튜브에 쓰레기 닌자 카카시의 일대기 이거 누가 만들었냐 3
앞에 10분만 봤는데도 ㅈㄴ 웃기네
-
20240628 4
이게 킬러임?? 28번 킬러라는데 24수능부터 그런 기조엿나요
-
성적표 발표 이후에 하루에 1-2시간씩이면 그래도 컨설팅 없이 혼자서 대학 라인...
-
몇분컷했는지 기억이 좀 애매한데 11시쯤에 20번 건든것같음 이정도면 뉴런들어도 될려나
-
민 족 고 대 6
내게 크림슨 과잠을 다오
-
밥이 어케 들어가지 ㄹㅇ 토할것같던데
-
스발 수시반수 실패하고 전과 신청 사유 쓰는거 ㅈㄴ 0
존나비참하네 신청사유 학업 적성 및 진로 학업계획 적으라느ㅡㄴ데 으 스발 나도 저...
-
처음만나는 날 뽀뽀는 어느정도 최소한의 외모까지 할수있어?
-
갑자기 갤러리 뒤지다 발견함 난 3칸인가 4칸이었던 거 같은데
-
꼬1기가 되고프다 11
금주 중
-
오늘 저녁 6
촉촉한 초코칩 2개 먹으려햇는데 하나 개박살 낫네.. 하나만 먹어야겟다
-
수능 복기? 25
애초에 긴장하는 스타일은 아니고 전날밤에 가서 뭐할지 다 생각하고 자료 챙겨놨었음...
-
글 보다가 궁금해짐
-
굿밤 10
갑자기피곤해졌어요 먼저잘께요
-
뭐 했다고 2024년의 마지막 달이 오냐
-
회당 브릿지 2000원, 서킷 2500원임요 이륙허가???
-
현우진쌤 커리 영상 왤케 신나보임?ㅋㅋㅋㅋㅋㅋㅋㅋㅋ 3
빨리 집 가고 싶은데 들키면 안되니깐~ 스미마셍 스미마셍 하면 다이죠부 다이죠부...
문과 재수생은 풀수 있는 문제인가요??
마지막에 f(x) 적분을 못해서 못 풀겁니다 ㅠ g(x)까지는 문과도 구할 수 있어요
제가 원하는게 g(x)구하는거라 g(x)까지만 구하셔도 답 구한거랑 차이가 없습니다..
g(x)가 0보다 작을때는 구할수 없는 함수가 나오는거 맞나요??
0보다 작을때는 그냥 그래프 개형만 상승인지 하강인지 유추해볼수있고 식은 쓰지 못하는거 같은데.....
g(x)가 0보다 작을때는 함수를 구할 수 없어요~ 그래서 구할 필요 없도록 했구요 그리고 문제 오류 있어서 수정좀 했어요 ㅠㅠ
이런걸 어케만들수있는지 노이해 (의심이아니라 진짜대단하심)
ㅠㅠ 풀어봐주세용..
16인가요?
맞아요~
기출에서 봤던거같은데 다른느낌으로 만드셨네요
진짜 감탄 했습니다 ㅋㅋ
감사합니다 ㅎㅎ
문제엄청 좋네요ㅎㅎ 단, 부분을 못봐서 좀 헤맷어요ㅋㅋㅋ
ㅎㅎ 좋은 평 감사합니다~
힌트좀
어디까지 하셨는데용?
(가)조건으로 g'(x)가 0보다 크거나 같고
(다)조건으로 g'(x)가 0보다 작거나 같다
따라서 g'(0) = 0이고
(가)조건에 x = 0을 대입하면 f(0)는 0이 아니므로 g(0) = 0
(가)조건에 x = 2를 대입하면 g'(2) = 0
따라서 x가 0보다 크거나 같을때 g(x) = x^4+ax^3-(3a+8)x^2이고
g'(x) = x(x-2)(4x+3a+8)이다. (단, a는 상수)
(-3a-8)/4가 0이나 2가 아닐 경우
x>0인 어떤 실수 x에 대하여 g'(x) < 0 이므로 모순이다.
따라서 (-3a-8)/4 = 0 or 2이고
(-3a-8)/4 = 0일때
0(-3a-8)/4 = 2일때
0a = 16/(-3)이고 0 0이다
(가)조건에 양변을 제곱한후 g(x)로 나누어주면
f(x) = g'(x)/g(x)이고
{ln(g(x))}' = f(x)이므로
f(x)를 1부터 2까지 적분한 값 = lng(2) - lng(1) = ln16/11 = lnk
k = 16/11
11k = 16
좋은 해설입니다 ㅎㅎ
ㄷㄷ 수학전공하시나요? 대단하시네...
g'(x)가 0보다 크거나 같고 g'(0) = 0으로 g (x)의 이계도함수에서 x=0일때 0이다가 성립안하는게 x의 구간이 한정되서 그런가요?
이계도함수는 전혀 의도하질 않아서.. 무슨 의미죠..??
x>0 때 g'(x)>=0일때 g'(0)이 0(도함순의 극솟값)이길래 g''(0)=0으로 성립하는줄 알았는대 (다)조건도 있고 정의역이 전체실수가 아니라서 성립안하네요 완전 잘못풀었습니다 ㅋㅋㅋ
얻어가신게 있길 바랍니다 ㅎㅎ..