미적 이 정도면 난이도 어느정도임?
김기현 파데 미적 3주하고 킥오프로 복습하는데 개념할 때는 개쉬워서 별거 없는 줄 알았는데 유형서 오니까 대가리 깨질 거 같네 평소에 머리 나쁘다고 생각한 적은 없었는데..
사람들말로 이정도 책이면 기초라는데 이 문제가 노베 개넘으로 풀리는 문제냐? 한 70프로 접근하고 그 뒤에는 못 풀겠다 요즘들어 깨닫는다 빡대가리라는걸
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
너무 속상해서 ㅇㅈ하기 20
펑
-
배웠어요 불교대학답게 쟈한테 깨달음을 줬어요 건동홍 서연고 서성한 중경외시
-
얼리버드기상 2
얿
-
그 사람 외모가 보이거든요
-
. 12
-
꼭 다른 색 눈은 특별한 능력을 가진 경우가 많거든요
-
옯스타 홍보하겟습니다 13
nynykyo_93 닉 모르겟으면 안받습니다
-
외대정도면 2
Cpa 준비해도 될까요? 4대법인 티오가 외대시립대부터 기타대로 묶인다는데 당연히...
-
사람 살리는거에요
-
ㅎㅇ 2
.
-
잠 좀 자고 싶다 11
불면증이 너무 심하네.. 잠에 들어도 자주 깨고
-
얼버기 5
-
디시펌
-
신기하게 생겼다는 말만 하지 말아줘... 생얼에 쌍커풀 없어서 진짜 이상하게 나온 거야 진짜임 ㄹㅇ
-
라면 끓여먹을까 8
배고픈데 어쩌지
-
내가 인증보고싶은사람 13
옯창남르비랑 존예여르비
-
이별하지않기 16
행복하기 다들 잘자
-
맞빨 하실분 9
맞빨 ㄱㄱ
-
진짜 그렇게 펑펑 운 건 초딩 때 이후로 처음인 듯
-
축하한다 ㅋ <약간 틀딱같음 축하한다 ㅋㅋ<비아냥대는거같음 축하한다 ㅋㅋㅋ <<진짜축하임
26번 정도
26 27 사이
ㅇㅇ
어려운 3점
학평에서는 저것보다 쉬운 4점 봤어요
27 or 29
기출에 비슷한거있지않나?
29번같은데;; 또나만어렵지
29급이긴한데 내가 어렵게 푼건가
개념 이후 단계에서 갑자기 어렵데 느끼신 건
아마 이 문제의 핵심이 급수 개념이라기보다 이차방정식의 실근에 있어서 그런 것 같아요!
이차방정식의 실근이요? 혹시 어떻게 푸셨는지 여쭤봐도 될까용
주어진 곡선의 방정식은 이차식이므로 이 곡선과 직선의 교점을 구하는 방정식은 2차방정식입니다.
따라서
어느 한 교점의 좌표가 주어졌을 때(A_n)
나머지 하나의 교점의 좌표를 구하는 것(A_n+1)
은
이차방정식의 어느 한 실근이 주어졌을 때
나머지 하나의 실근을 구하는 것
과 같고,
이는 이차방정식의 근과 계수와의 관계라는 개념을 끌고 왔을 때 가장 간결한 풀이를 낼 수 있게 해줍니다.
여기까지를 풀이의 전반부라고 합시다.
그러면 후반부는 선분의 길이를 n에 대한 식으로 나타내는 것이겠죠.
저의 의견:
1.
전반부의 결론을 내리기만 하면
후반부는 특별한 사고과정이 필요없다.
(두 점의 좌표가 주어졌을 때 선분의 길이를 작성하는 과정일 뿐이므로)
따라서 전반부를 쉽다고 인식한다면 이 문제가 쉽게 느껴질 것이고, 어렵다고 인식하면 이 문제가 어렵게 느껴질 것이다.
위 답글에서 보였다시피 전반부를 쉽게 해주는 것은 이차방정식의 구조를 인식하고 이차방정식의 근계관을 적용하는 것이다.
2.
심지어 후반부의 계산을 짧게 해주는 데에도 근계관을 이용할 수 있다.
두 점은 모두 곡선 y=x^2 위의 점이므로
두 점의 x좌표의 합과 차만 얻는다면
선분의 길이를 구하는 과정이 편해질 것이다.
곧, 풀이의 전반부는 물론 후반부까지
이차방정식의 실근을 다루는 경험이 다분하다면 쉽게 접근하고 작성할 수 있는 것이다.