미적분 자작문제(1200덕)
첫 정답자 1200덕 드리겠습니다!
0 XDK (+10)
-
10
-
뭐가 더 좋을 것 같음? 가,나 다른 거 아는데 하나만 할 수 있어서 그럼
-
원은 자주 등장하는 도형 중 하나입니다 기하에서 뿐 아니라 사인법칙과 코사인법칙을...
-
뭔 커플이여 ㅉㅉ
-
생존신고 4
오늘 11시까지 자빠져 자다가 숙취해소제 두개 털어먹고 국밥집 가서 수육백반으로...
-
궁금합니다
-
하
-
'나라'는 일단 중세국어에선 '나랗'으로 소급되는데 보이다시피 ㅎ 말음 체언이었다....
-
약대는 영남대고 한의대는 세명대 약사는 절대 하기 싫고 노는거 좋아하고 뚜렷한...
-
어제 대학등록하고 계속 기쁘고 안 우울해서 좋았는데 하루만에 기분 다운됨요
-
저는 오늘 대전역 근처의 유명한 디저트 집에 다녀왔습니다
-
이미지 써주세용 6
ㅈㄱㄴ
-
이미지메타네 4
나도나도
-
제 이미지는 어떤가요 32
혹시저를싫어하는분이계신다면 죄송합니다
-
왕심심함뇨
-
존내 고민만 하다 결국 말을 못함... 지금이라도 한강 가서 놀자 해볼까요 인스타...
-
복학하면 여친 안생긴단 말이예여 ㅠㅠㅠ
-
하 ㅋㅋ
-
171130 181130 같은 기출 해설 절대 안보고 시간 박으면서 풀었을 때
-
왜 클릭?
-
안녕하세요
-
가능할거같나요? 추합이라도
-
진학사 몇칸이거나 몇명중에 몇등임??
-
개념 듣고 기출풀고 심화 듣고 모고 푸려니까 모고 건들수가 없더라고 뭘해야할지...
-
AI가 대신 일해줄 것
-
슬슬 나가야겟다 9
오늘은 바이바이
-
신상 털릴만큼 뭔 짓을 했길래
-
코와이네 4
뭔일이다냐 이게 메인글 지금봣네
-
게이글도쓰지말고 신상털려도 그냥웃고넘길정도로...
-
걍 난이도만 봤을때 어떤게 더 나을까요? 언미물지 24수능53323...
-
닉네임만 어디서 들어본거같고 뭔짓 했는지 잘 몰라도 7ㅐ추 ㅋㅋㅋㅋ
-
어디가는게 좋을까요? 반수는 할 예정입니다.
-
커플이 참 많군요 허허
-
알림 버튼 누르기 댓글로 ㅇㄷ 쳐봤자 자기 댓글에 답글 달리는 거 아니면 알림이...
-
둘다 붙은 상황이고요 어디를 가야할지 모르겠네요.. 근데 문관데 식품영양은 화학이든...
-
클스마스 지나고 있잖아(?)
-
궁금함
-
[정통사주] 잘맞는 무료사주 추천 해드릴게요. 지금부터 무료사주 제일 잘보는곳 1개...
-
도란 부럽다 0
멤버십 영상에서 대상혁이 문어 먹여줬다는데 이정도면 잃어버린 티원 친자식이냐..
-
주말에 봐용 10
-
숭실대 합격생을 위한 노크선배 꿀팁 [숭실대 25][학점 알뜰하게 챙기는 방법(1)]] 0
대학커뮤니티 노크에서 선발한 숭실대 선배가 오르비에 있는 예비 숭실대생, 숭실대...
-
난 닥후임... 특히 후자는 ㄹㅇ 콧김까지 내뿜는게 좀 천박해서 암컷 오리한테...
-
얼버기 1
크리스마스에는 늦잠..
-
이름 적고있다
-
메이저 로스쿨 진학 하려면 리트나 학점 어느정도 되어야 하나요? 또 의사...
-
쵸비가 월즈를 우승한 횟수와 동일하다 이런거 외국에서 밈이던데 쵸비가 월즈...
-
가격을 어느 정도로 받는게 좋을까요? 전 지거국 의대생이고 컨설팅은 주요교과 학습,...
-
프사 있는거(자연스러운 이미지 형성) 덕코(로 인해 파생되는 컨텐츠인 레어, 복권)...
이건 5다
ㅈ..정답..!
이게 뭐야
와 이걸 맞춰?
발문이 어디서 본거같은데
3월 가형 30번이었나
2018 9평?
f(x) = t√x + x(lnx - 2)
f'(x) = t/(2√x) + lnx - 1
|f(k) - g(k)| = g(k), f(k) = 0 or 2g(k)
lim(x→0+) f(x) = 0 이고 f(x)가
구간 (0, ∞)에서 증가하면서
y = |f(x) - g(x)|가 x = k에서 최소이므로
f(k) = 2g(k), f'(k) = g'(k),
g'(k) ≥ f(k)/k → kf'(k) ≥ f(k)
여기서 k = h(t)이면 kf'(k) = f(k)이므로
t√k/2 + klnk - k = t√k + klnk - 2k,
t²k/4 = k², k = h(t) = t²/4
→ h'(t) = t/2, h'(10) = 5
정확합니다!
저 g'(k)≥f(k)/k 는 어떻게 나온건가유..?
아니 제발 해설 좀 궁금해서 일상생활이 불가능해요....
다른 건 알겠는데 저 부등식이 평균변화율로 관계식 만든 건가요??
그래프 직접 그려보니, x=k에서 최소이려면, f(x)의 x=k에서의 접선이 0,0 을 지나야 하는 게 k의 최소네요...
그래프만 잘 그렸다면 바로 보였을 텐데 아볼 위볼 파악을 잘 해야 했네요...