함수추론 자작문제
계산은 많지 않지만 생각을 많이 해봐야 하는 문제 같습니다 개형만 찾으면 답은 바로 쓸 수 있으니 편하게 풀어보시면 좋을 것 같습니다 의도한 난이도는 22번 정도
(+)오류 있습니다..ㅠ 아래 조건을 추가해서 풀어주세요 죄송합니다
(나) (단, 두 실수 t1, t2는 -2도 아니고 2도 아니다.)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
6모 풀어보니까 비문학이랑 화작은 그럭저럭 풀만한데 문학을 거의 손도 못대겠더라고요...
-
다들 알겠지만 설마 싶어서
-
수능 보다가 의치한 못가면 공대가서 변리사 준비할 생각 있는데 전망 안좋나요?
-
십일워 같있순 문풀~~중복조합 문풀1
-
돈번다 캬 3
아침에 빠듯 일하고 7만5천 쓸어갈 생각에 군침이 싹
-
숭 경이랑 과기 경 중에 어디 가나요
-
정치인하러 갈게요
-
일어나서 밥먹고 쇼츠릴스틱톡오르비밖에 한게없네
-
덕코 2
어떻게 얻을 수 있는건가요?
-
내일시험끝 6
ㅣ으흐흐..
-
변표 유불리 0
사탐 백분위 100 95 인데 물변 불변중 머가 유리하나요...?
-
시립대 경영경제 3
얘들은 탐구 10%라서 변표 영향 별로 없나요? 시립대식으로는 0.05 오른것 같은데 ㅋㅋㅋ
-
맞팔구 0
ㄱㄱ
-
자드가자
-
대종쌤 현장 조교 연락 오신분 계신가요?? 있으신 분 댓글이나 쪽지주시면 정말 감사하겠습니다 ㅠㅠ
-
시립대 0
시립대식 935.5면 어디까지 쓸수있을까요?
-
경희대학교 수학과에서 25학번 아기사자를 찾습니다! 3
안녕하세요. 제 20대 경희대학교 수학과 학생회 '휴게소' 입니다! 먼저 경희대학교...
-
보고싶어요
-
하 ㅅㅂ
-
제목 그대로 수능 확통 사탐으로 시험 본 사람인데 이과쪽으로 대학을 갈 것 같습니다...
-
오지훈 돌았네… 3
예비 고3인데 지구1 내신 2등급, 고2모고 백분위 95정도 뜨는데 이훈식 풀커리...
-
아니면 2000초반이라도 그따가 진짜 낭만의 사대였던것같은데
-
보통 연대 선호도가 높아서 연대가나?
-
고23내신올1 2
안되는거 알고 그냥 궁금해서 그러는데요 고1때 주요과목까지 2,3으로 도배돼서 내신...
-
팔로워가 줄었다 맞팔구 17
저도 은테 달고 싶어요
-
내년 과탐 가산 2
연고 서성한 다 뜬건가요?
-
역시 1호선인가 0
할아버지가 ㅇㄷ보신다
-
홍대 논술 추합 3
홍대 자전 예비5번인데 추합가능하겠죠?? 3년동안 5명이상으로 돌긴했는데 불안해서요..
-
메디칼 아주 인하 라인 될 수 있을까요? 국어는 화작이고 마킹 도중에 종쳐서 7개...
-
난 작년에 4칸뜨길래 걍 안썼는데
-
쌍윤과 쌍사를 비교한다면.. 1. 백분위 안정성은 어떤 과목이 나을까요 ??...
-
'보좌관 성추행' 박완주 전 의원 1심 징역 1년 선고…'법정구속' 1
▲ 보좌진을 성추행한 혐의 등으로 불구속기소 된 무소속 박완주 의원이 지난해 8월...
-
아 참고로 여자예요..
-
서강 물변 0
안해주면자살할거임
-
과탐 가산점 무시하고 봤을 때 사문99 지구88은 물변 불변 중에 뭐가 유리한건가요?
-
부엉이 출현 6
근데잡혀버렸다
-
메디컬 정도 빼면 위아래 라인까지도 싹다 영향 가는데
-
사탐은 안받는다 이정도?? 인가여
-
아빠가 뭔 군대 가려고 준비를 하냐고 욕을 하심 ㅋㅋㅋㅋㅋ 하긴 일반인 입장에서는...
-
설대 제일 낮은과 몇점까지 될까 뀨뀨뱃지 달고 싶따 2
의류 간호 산림 식공 역사교 윤리교 아동가족 또 뭐 있지? 미적생지 외국어까지...
-
공통은 두번씩 뉴런 돌렸는데 들어보니까 공통 한완수 상중하는 최상위권들한테도...
-
성균 한양아 6
하루준다. 내일까지 변표 가져와
-
작년에 12월 26일에 나왔다던데 대체 왜 늦게내는거지ㅠ
-
현역인데 진학사로 6칸 나오면 합격한다고 봐도 되는거죠? 좀 불안해서 665나...
-
ㅜㅜ 하고 싶었는데
-
구제도 없으면 의사도 못되는 의대생 되는건데 그럼 진짜 의대를 갈 이유가없음...
-
맷돼지 출몰 19
나야 꿀꿀.
-
ㅋㅋㅋ
-
여기 판에서 너무 오래 고통받고 계신 분들이 보여 끄적여봅니다..공부에 흥미도...
-
지금 정시로 고대의대보다빡셈?
개어렵네 ㄷㄷ
안어려워용..
옹 이건 풀어봐야지 잠만녀
제발 풀이좀 알려주세요ㅜㅜ
오류가 있어서 죄송합니다..ㅠ 확인하시고 다시 풀어보실래요?
크악..ㅜㅜ
현역이신가요?
올해 수능 쳤습니다!
오,,,그렇군요
수학 양식 같은 거 완벽하게 숙지하신 게 신기하네요
문항 제작 많이 연습해 두세요! 조만간 제안 하나를 드릴 수도 있을 것 같아요
오우 말씀만으로도 감사합니다 :) 언제든 맡겨주십쇼!
아 문제 잘못봤네요 죄송합니다!
이거 정답개형이 뭐죠...?
234 맞나요?
아니네요 흠
오류 수정한 것에 따르면 맞습니다! 제가 의도한 답은 이거에요..ㅠ
아 -2가 비어서 다시 푸는데 그걸 빼야 했군요
아닙니다.. 시간 낭비하게 해서 너무 죄송합니다ㅠ 부족한 문제 풀어주셔서 감사합니다!
1. g(x) 좌우극한 다르려면 그지점에서 f(x)와 x의 대소 바뀌어야함 and f(x)와 x의 대소가 바뀌면 x가 0이 아닐때 g(x) 좌우극한 다름 -> 'x가 0이 아닐때 g(x) 극한 not 존재'와 '0이 아닌 x에서 f(x)의 대소변화'는 서로 필요충분조건, 따라서 x=0을 제외한 f(x)에서 x=4에서만 대소변화
2. f(x)-x는 사차함수이므로 부호변화가 짝수개 있어야함 -> x=0에서도 f(x)와 x 대소변화 (x=0과 x=4에서만 f(x)와 x의 대소변화)
3. f(x)의 최고차항 계수가 양수일 때: 0 f(2)<0
4. h(inf)=2이므로 h(x)<3
5. f(2)<0이고 f(4)=4이므로 20 인 x 존재 and 같은 논리로 f(0)=0이므로 0 0(+) 지점 존재 = f(x) 극소 존재
6. 이 극솟값이 양수면 같은 논리로 다른 극솟값 또 존재 -> 극소의 개수는 유한하므로 음의 극솟값 존재
7. g(x)=-f(x) (0 이 양의 극댓값을 c라고 하면, g(-inf)=inf고 g(0)=0이므로 g(x)=c인 x<0 존재, 따라서 lim x->c- h(x) >=3 -> 모순 -> 따라서 f(x)의 최고차항 계수는 음수
8. f(x)의 최고차항 계수가 음수: 0x>0이고 반대로 x<0, x>4에서 g(x)=-f(x)
9. g(0)=0이고 g(4)=4이므로 04에서 f(x)=0인 x 존재 -> 이 x를 a라고 하면 g(a)=0이고 g(inf)=inf이므로 x>a에서 g(x)=c인 x 존재
11. 따라서 g(x)=c의 실근은 최소 3개이므로 h(c)>=3 -> 모순
12. f(x)의 최고차항 계수를 양수라고 가정해도 모순, 음수라고 가정해도 모순
아 기껏 타이핑했는데 텍스트 깨졌네...
맞나요!!
맞습니다! 저 문제 자체는 모순입니다.. 오류 수정했는데 다시 한번 풀어봐주실래요 죄송합니다..
제발정답좀요 ㅠㅠ 못자겠어요
오류 확인하셨나요?
넵..
그래프 개형입니다!
아 저렇게 g(2)만 톡 튀어나와 있으면 되는구나..ㅠㅠ 위로 볼록이 생기면 안되는데 g(2)>0이려면 f(2)<0이고 그럼 위로 볼록이 무조건 생기는데??? 로 계속 헤맸어요 수능 공부할때도 이런거에 취약했던... 그래서 뭔가 y=x에 한번 접하지않을까 생각했는데 저걸 안해봤네요
저런 디테일 찾는 게 쉽지는 않죠 ㅠ 풀어주셔서 감사합니다!
ㅋㅋㅋㅋㅋㅋ제가 죄송합니다ㅜㅜ
중근갖는걸 생각못해서 한참 해맸네요
닫힌부등호인지 열린부등호인지 잘봐야하는데 감다떨어졋네
조건 자체에 모순이 있기도 했으니.. 더 힘드셨을 것 같습니다 모순 찾으신거 다 적어주시고 정말 감사합니다!
f(x) = 1/16 x(x-2)²(x-4)+x
f(-6) = 234