수학 황 질문
근의 차이가 2일때만 가능하다고 하는데 근의 차가 2일때 제가 그린 그림의 경우에는 3개 아닌가요?
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
ㅇㅈ할게여 34
어차피 이제 정시도 못쓰는데 굳이 더 숨길 필요 없음
-
헬스터디 29
나도 지원해볼까? 강사 선택 마음대로 가능하면… 내년 오르비학원 라인업 좋은데…...
-
아이디를 살 수가 있음..? 난 뱃지 있으면 그냥 믿는데.. 일단 본인은 세종대 쓸...
-
동생 인스스 보는데 친구 잘못 사귄거 같은데... 20
존나 어지럽네,, 뭐라 말 해줘야 하나 중1인데 저건 동생 친구가 쓴 거임
-
약간 늦은 닉값인증 18
네
-
원하는 형태로 고정 ㄱㄴ
-
내자존감을떨어뜨리지말아줄래
-
저녁여캐투척 16
mz여캐 하루히
-
연논 합격 ㅋㅋ
-
민트테를 달며 특정당할까봐 의뱃을 못 다시던 누군가가 생각나네요ㅠㅠ
-
해보니까 사수 되는거 한순간임…..ㅋ 그리고 왠만하면 대학 걸고 하세요…
-
오늘 수업 마지막 날이였는데 고정좌석 옆자리 매일 앉던 분이 수업 끝나고 인스타...
-
성공해서 돌아올게요 12
사실 저번 투표때 마음이 좀 아팠는데 아직 가시지 않았어요 그때 결과가 좋음이 45...
-
오늘 물리력 하락함 11
약 1.5주 만에 샤워함 ㅁㅌㅊ?
-
연의 카의 아주의는 있는걸로 아는데.. 면접 있는 학교가 더 있을까요?
-
영화 내내 눈물 고여있었는데 마지막에 와르르 쏟아짐
-
걍 궁금
오…이런 생각은 안해봤는데
저런 상황에서도 t가 a+로 갈때 g(t)는 1입니다
그게 궁금한거였는데 왜인가요?
'감각적직관'
?
극한에서의 위와 동일한 개념을 묻는 기출: 231114, 230430(미적)
2개 해설강의 참고 ㄱㄱ
x가 a보다 크면서 a에 한없이 가까워지면 a과 저 근 사이로 x값이 올 수 있잖아요
아 그러니깐 a값이 아무리 근과 가깝다 해도 그 작은 사이에 값이 존재해서 결국은 우극한이 근이 되지 못해서 2개가 아닌 1개라는 건가요?
네네 그렇게 이해하시면 됩니다
이해 한번에 되었어요
아 근데 혹시 a를 근의 좌극한값이라고 설정하면 그때 a의 우극한 값은 근 아닌가요?
근의 좌극한값으로 설정한다는 것이 정확이 무슨 말인 지 모르겠네요.
써주신 말을 그대로 보면 좌극한'값'은 상수이므로 그걸 구해서 넣어버리면 되는 것이고,
사진의 상황을 생각하신 것이라면 a의 값에 따른 g(t)의 값을 새로운 함수 h(a)로 구한 후 h(a)의 근에서의 좌극한을 구하면 됩니다.
제가 조금 헷갈리게 적었던것 같은데, f프라임 (x)의 두 근 중, 작은 근의 좌극한값이 존재할 것인데, 그 값을 a로 설정하게 된다면 , a의 우극한 값이 결국엔 (역함수같은 관계로….?) 근이 되기 때문에, g(a+) 범위가 [근, 근+2]가 되므로, f프라임(x)는 근의 거리가 2인 함수이므로 결국에는 g(a+)는 2개, g(a-)는 1개가 나와서 총 3개가 되는게 아닌지 의문이네요
질문이 계속 길어져서 죄송합니다 ㅜ
a의 우극한이 근이 되도록 하는 a의 값은 존재하지 않습니다
극한 개념을 다시 잘 생각해보세요
앗 그런가요 감사합니다
a+면 작은 근이 빠지고 a-면 큰 근이 빠지잖음
아니면 그냥
g(t)= 0(t<!)
1(!=<t<@)
이런식으로 g를 직접 쓰고 극한 구해보기