{1+x^(1/2)}^(1/2)는 부정적분을 구할 방법이 있을까요?
만약 제목에 적힌 식이 나왔다면
어떻게 부정적분을 구할 수 있나요?
아 위의 식이 문제로 존재한다는 건 아닙니다
그냥 9덮보다가 생긴 의문점인데 혼자서는 잘 모르겠어서 질문드립니다
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수고많았습니다 0
"스스로 빛나게 되었음을 진심으로 축하한다"고. 11월 22일 3시 30분. 우리의...
-
지금부터 서로 죽여라?
-
뭐냐 에반게리온급이네 ㅅㅂ이
-
올해 150일 이상 4시간씩 탐구(생윤사문)에 박았는데 32떠서 좌절감을 맛보고...
-
창팝 밴드 커버 준비했는데 놀러와주시면 감사드리겠습니다 ㅋㅋㅋ 서울특별시 서대문구...
-
.
-
자이스토리 2
자이스토리 고3 수학 사려는데 수능 년도 바뀔 때 마다 문제 차이가 큰가요..?
-
왜 31만원이 21만원이 되었는지 설명해볼래
-
자니? 13
-
여성 인권운동가 아이민 1334714에 대해 araboza 4
우선 해당 아이민을 댓글을 기준으로 검색해보도록 하자 놀랍게도 여대,페미 관련...
-
경희대 논술 0
수리 논술인데 2-1에서 범위를 0<a<2/5까지라해서 틀리고 3-1에서 C값을...
-
수능은 끝났는데 3
왜 내 불면증은 안끝날까
-
내가 생각보다 잘하는거구나라는 생각이듦
-
잠을 못자 ㅅㅂ
-
강기원 김현우 장재원 박종민 안가람 이동준 ㅅㅂ 커뮤니티에서 후기들 알아보고있긴한데...
-
어그로 ㅈㅅ 87 74 2 93 93 동국대 철학괴 ㄱㄴ?
-
투과목잘알님들아 2
지2어떰?? 생2처럼 운이 크게작용함? 아님 정직하게실력만큼나옴?
-
얘네 지금 볼 필요 없음 그냥 놀아요
-
진학사? 2
다들 진학사 결제 하셨나요…? 아니면 다른 거 쓰시나용 요즘 걱정돼서 잠이 안 옴 ㅎ….
-
전날까지도 자꾸 실모에서 개념문제 하나씩 나가길래 수능날 실수하면 죽겠다는 마인드로...
-
오르비 땅따먹기 6
특정 검색어 도배 미코토 검색하면 내 글이 50퍼가 넘는다 흐흐흐
-
심심한데 0
뭐 질문해줘요
-
과탐과목 2
물원생투했는데 바꿀까요 그대로갈까요
-
걍 닉네임 안뜨면 안됨뇨? 왜케 거슬리지
-
고1 자퇴 고2 첫수능 평균 4 재수 후 평균 1.2 (나이로 재수) 수능 미적분...
-
서강대교 성수대교 한강대교
-
마렵네 :)
-
질병분류체계에 정신병으로 한국페미 집어넣어야한다 반사회적 인격장애와 경계선지능장애가...
-
똥줄타실것같음
-
이과고 연대 활우 성대 과학인재 중대 탐구형인재 썼는데 연대만 1차 붙어서 면접...
-
글 리젠이 없네 0
흑흑
-
미코토 이쁨 3
-
마히루 이쁨 1
-
타이탄 이쁨 4
-
걍 구라일 확률이 매우 높음뇨 커뮤에 치대 떡락한다 의대는 신이다 도배하고 다니던...
-
루비 예쁨! 7
-
종강언제함 5
ㄹㅇ
-
현기증인가 4
물에 한시간정도 들가 있었더니 살짝 어지러움
-
엄청 불안하네 갑자기 영어 1 아니면 다 망하는건데
-
제가 고1 때 자퇴해서 고2 때 첫 수능 보고 고3 (올해) 재수인데 사실 내년에...
-
성심당 애니플러스 애니세카이
-
부시맨 브레드 나오면 소스 한개만 나오니까 나머지 두 종류도 꼭 같이 달라고 하셈요...
-
팩트는 ㅄ이 맞다는거임 10
언냐 뭘 부정하고 있어
-
어떻게 대해야할지 잘 모르겠음.. 특히 그 사람과 다른 사람들 같이 있을때 스스로...
-
컴공 생각하고 있었는데 점점 ai발전하고 이미 기술자들 많은거 같은데 지금이라도...
-
안녕하세요. 처음으로 글 써봅니다. 일단 전 광역시중 하나에 거주하는 남학생입니다....
-
어케한거냐면 진짜 말그대로 하루종일 아무것도 안먹음 아이스아메리카노나 제로 음료는...
-
이게오르비지 ㅋㅋ
라네요
감사합니다 선생님
아싸리 근호 안을 통째로 치환
감사합니다 선생님
혹시 실례가 안된다면 하나만 더 여쭤봐도 될까요...?
말씀해주신 대로 치환을 사용하면 쉽게 해결이 되는 것은 알겠습니다
그러나 저 스스로 치환을 떠올리지 못한 것이 문제의 핵심적인 원인이 아닐까하는 생각도 들었습니다
혹시 선생님께서는 무엇을 보시고 치환을 사용해야겠다+괄호안 전체를 치환해야지! 라는 생각을 하신건지 궁금합니다
이 부분을 제가 확실히 이해해야 부분적분이든 치환적분이든 적재적소에 사용할 수 있을 것 같습니다
알려주신다면 대단히 감사히 받겠습니다
이번 9덮에서도 27번을 틀렸는데 부분적분을 하기 전 치환을 먼저 하면 허무할정도로 쉽게 해결되는 문제였습니다만 저는 부분적분 해야겠다는 생각까지는 했으나 치환까지는 생각이 도달하지 못했기에 이 부분에 대해 꼭 해결을 하고싶어 이렇게 한번더 재질문을 드립니다 부탁드립니다 ㅜㅠ
특이한 형태는 어지간해선 부분 아니면 치환이잖아요. 근데 저건 곱으로 되어 있는 함수가 아니고 lnx 적분처럼 1을 적분한다고 해서 풀리지도 않으니 부분적분은 절대 아니겠구나 생각할 수 있죠. 그럼 이제 판단할 건 dx를 x 없이 dt로 바꿀 수 있는가를 보는 건데 꼭 dt일 필요는 없고 t에 관한 식 * dt 여도 되는 거잖아요? 그 다음에 x^1/2을 치환할 건지 1+x^1/2를 치환할 건지 생각하면 되는 건데 어떻게 치환을 하든 dx를 dt로 바꾸면 되는 거고 루트 x나 e^x 같은 건 미분해도 원래 형태가 남아있으니까(e^x는 그대로, x^1/2는 분모로) 그걸 이용하면 dx를 dt로 바꿀 수 있겠구나 싶은 거죠.
x^1/2=t
1/2(x^1/2) dx = dt
1/(2t) dx = dt
여기서 치환했던 문자가 미분한 식에 어떤 형태로든지 있겠다라는 느낌이 들면 저는 특이한 형태의 경우 치환적분으로 밀고 나갑니다.
저런건 치환적분때리면 풀리긴 하는데
1/(a+x^n)같이 분모에 식있다? 걍 못푼다고 봐야함