2022년 7월 출제 22번
공부 할 건 해야지,, 개인적으로 이 문제 어렵다고 생각함
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
세학교 모두 1학기 휴학 안되나요..?
-
대학라인좀 봐주세요
-
흠.. 난 비관적에 가깝다고 느꼈는데
-
고속 0
고속 하위권라인 대신 해주실분 계신가요?? 경기권라인 지거국 등등..
-
28 수능부턴 통사통과 보는 대신 영어도 상대평가되는거 아님? 1
다시 등급제로
-
반수할생각이라 책 쌀때 중고로 구매할까하는데 내년수능 준비하면서 뉴런 시냅스...
-
현우진 : 100번이상 본듯. 키가 크다. 한석원 : 코로나 전에 깊생 근처에서...
-
수특이었나 수완이었나 이상 작가 연계로 건축무한육면각체가 나왔었으면 재밌었겠다
-
현역 44355 (미적과탐) 재수 14456 (미적과탐) 삼반수 25211...
-
사탐 1타 강사가 임정환쌤, 김종익쌤, 이지영쌤 정도로 생각하면 되나요? 1
통합사회 인강 저 셋 중에서 들어볼까 고민되서요
-
미적 난이도를 10이라 치면 확통은 난이도가 어느정돈가요? 5
여러분 생각 자유롭게 ㄱㄱㄱㄱㄱ
-
ㅈㄱㄴ
-
포함한다는거 사실임? 고려대는 24부터 연세대는 26부터 내신 포함한다는데?...
-
기출을 더 풀까요 아니면 n제를 사서 풀까요
-
하....
-
어케함? 일말인데 한번 혼나면 그거 기억에 ㅈㄴ남고 공부에도 방해됨...
-
수능 2등급 lets go
-
성장형 인재 1
가 되고 싶어요
-
쿠팡은 잘 잡힐줄 알았는데
-
진짜 놀라울정도로 15
Mbti를 모르는 상태에서 괜찮다고 느끼는 사람들은 어째 다 인팁 인프피임ㅋㅋㅋ...
-
부처의 눈에는 부처만이 보이고 금수의 눈에는 금수만이 보입니다 이하생략....
-
내려갈일은 없을거 같은데
-
기생집 4점 하는중인데… 내년엔 모하지~ 추천좀여
-
6평까지만해도 교사 출제 가지고 다들 평가원 욕 했는데 수능되니까 조용하네
-
제시문 [가]를 세칸 말고 한 칸에 작성하면 감점되나요ㅠ? 칸이 부족해서 동국대에서...
-
기하 권하는 사람이 많네요 기하는 표점 낮지 않나요?? 뭔지 잘 몰라서….
-
상관없나요? 곧 졸업하는 고3이고 내년에 수능 봅니다 종치고 2분뒤에 들어와서 출석...
-
대학 라인좀 0
언매 미적 영어 물1 지1 기준으로 백분위 93 93 1 93 93이면 대학...
-
귀여워요..
-
차이가 뭐죠..????
-
고등학교때 학원 안가고 영어단어도 안외웠는데 1등급 그냥 나옴..남는시간에 다른공부...
-
왜 꼭 내가 맞춘 문제는 이의제기 들어오고 내가 틀린 문제는 이의제기 안들어옴??
-
국어 비문학 공부할때 오답만 하면 안된다는데 도대체 뭘 하라는건지 모르겠어요.....
-
마음이 어수선합니다
-
다른건 몰라도 반수생 장수생 태그는 왜 없앴을까요..
-
나는 왜 늦게 태어나서 이런 꿀통을 못 보는 거냐 ㅠㅠ
-
생각보다 잘 안걸리는데 보통 몇번만에 걸리심?? 확정문자
-
저출산 때문에 나라 쳐망해가는데 허구한 날 명품백 받았니 마니만 몇년째 얘기하고...
-
얼버기 4
안녕하세요
-
얼?버기 2
-
이번 수능언매 40번에 5번 찍어서 틀린 사람입니다. 4번은 방송 출연자가...
-
따뜻한 우동먹고싶다 따뜻한 쌀국수먹고싶다 따뜻한 붕어빵먹고싶다 따뜻한 호떡먹고싶다
-
현역 때 떨어지고 수시 재수로 다시 지원하면 무조건 떨어짐?
-
늦게일어도려해도 안되는..
-
고대 내신 반영전형도 그렇고 손해 볼 내신은 아닌 겅가요? 그냥 지방 일반고임요
-
현정훈 물2 3
라이브 개강하나요? 현역이라 재종 못 들어가요 라이브 개강 안 하면 그냥 지2하려고 함...
-
진심으로.. 안먹으면 머리아픔
-
한시간 잤는데도 어질어질하고 내 생각과 행동 사이에 딜레이가 있는 것 같음...
역대 공통 수학 중에서 제일 어려운 듯
저는 이 문제랑 작수22 요번 5월 요것들을 탑으로 뽑음여
작수 22는 기울기함수여서 어려운건가요
쉬워보이는 문제 속 핵심 조건
--> 막상 건드리면 복잡함
숫자가 분수임
-->그 자체로 곤란함 유발
특이 조건이 아님
-->특이한거 먼저 보느라 시험지 공백 증발
계산량 에바
: 1로 시간 증발, 2~4로 공백 없음, 시간 증발
아 공백x 여백o
아 작작수22도 있었네
핵심발상이 뭔가요 이문제
(가) 뜻이랑 최고차항 부호 결정하는게 핵심이라고 보는데 후자가 전자보다는 조금 더 벙 찐 상태로 있을 거 같아요
4사분면에서 12를근으로 가진다 알면 다른문제아닌가..
4사분면에서 12를 근으로 갖는 것은 어느정도만 해석 해도 알 수 있다고 생각하지만
제가 보았을 때 중요한 것은 f=0이 어느쪽에 위치하는지에 따라 g의 도함수의 부호가 달라질 수 있으므로 C=18a 라고 적어둔 것을 떠올리지 않으면 쉽게 a를 결정할 수 없다고 봅니다
예를 들어서 iii)의 왼쪽 그래프에서 0,0이 f의 근 중 왼쪽에서 두번째에 위치한다면 g는
f의 최고차항의 부호와 같은 부호를 가져야하지만 이 경우에는 f는 양, g는 음이므로
C=18a일수가 없습니다
(덧붙이자면 왼쪽에서 세번째에 위치한다면 x=0,12에서 f=g에 모순이 생깁니다)
설명을 워낙 못 해서 잘 이해가 안 가더라도 이해 좀 해주세요 ,,ㅜㅜ
물론, 제가 빙빙 돌아 풀어서 한 번에 알아내지 못 한 거일수도 있지만 제 머리로는 이렇게 알아내는게 한계네요ㅜ
전근데 4사분면에서 12인걸로 a부호 알아낸거긴해요
식으로 보셔서 그런가
오 그걸 한 번에 알아내셧군뇨
아래에 “오랜만에 수학22번”에서는 5월 22번응 처음부터 그래프로 접근했는데 이건 처음부터 임의로 그래프를 그려 접근하기가 조금 힘들더라구요
저문제보자마자 차함수 떠오르고 차함수 두개만날때 0이고 접할때 중근갖는다 이생각하면 성공한거죠?
저도 처음엔 그걸 핀트로 잡고 풀이를 시작했으니 좋은 생각이라고 봅니당
통합수학 이후 역대 교육청 22번 중 최고의 문제라 생각
아으 쉽지 않더라구요