[이동훈t] 영원히 반복되는 구조+실전개념 (2106가18(나21))
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은
수능 시험에서
영원히 반복되는 문항 구조,
과목은 다르지만
공통적으로 평가되는
실전개념에 대해서
알아보겠습니다.
전체를 모두 살펴보는 것은
한 개의 칼럼 글에서는 힘들겠고요.
(좀 더 많은 구조 연구+실전개념은
2025 이동훈 기출문제집에 수록된
실전 개념 설명 파트를
참고하시면 됩니다.)
21학년도 6월 모평 가형18 (나형21)
수학1 ㄱ, ㄴ, ㄷ 문제에서 평가된
문항구조+실전개념이
수학2, 미적분에서도
동일한 맥락에서 평가되고 있음을
함께 살펴보겠습니다.
본론 들어가실께요 ~!
힐 위 고 ~!
이 문제를 모두 읽고,
두 곡선을 그리고 나서
아래의 생각들이 바로 들어야 합니다.
(1) 문제에서 주어진 두 곡선을 그리자.
(2) 두 곡선의 두 교점의 x좌표가 모두 -1, 1 사이에 있고,
이차함수 y=-2x^2+2 의 꼭짓점이 (0, 2) 이므로
두 곡선을 바둑판(격자) 위에 그려야 한다.
(이때, 격자를 그리지 않으면 ㄴ을 기하적으로
해석하기 어려울 수 있음)
(3) ㄱ. 사이값 정리
ㄴ. 기울기의 대소 비교 (& 기울기 1)
ㄷ. x1, x2 의 범위 & 2^x = -2x^2 = y 이용
위의 ㄱ, ㄴ, ㄷ에 대한 생각은
사실 그림을 그리지 않았어도
머릿속에 떠올라야 합니다.
어차피 평가하는 것이 정해져 있고,
이는 매우 전형적이기 때문이지요.
요컨대 ...
곡선 2개 -> 교점 -> 경계값(ㄱ), 기울기(ㄴ), 방정식연립(ㄷ)
이게 전광석화 같이
머리를 스치지 않으면
어찌 시험장에서 안정적인 만점을 받으리오 !
참고로
위의 설명은
2025 이동훈 기출문제집의
후반부에 수록된 실전개념에서
모두 다루고 있습니다.
그리고
위에서도 잠깐 언급하였지만 ...
ㄴ에서
y2-y1 < x2-x1
(필충)
(y2-y1) / (x2-x1) < 1
(필충)
두 점 (x1, y1), (x2, y2) 를 잇는 직선의 기울기 < 1(=직선의 기울기)
기울기가 1인 직선을 찾는다.
즉, 연결하면 기울기가 1이 되는 두 점을 찾는다.
는 격자를 그리지 않으면 잘 보이지 않습니다.
특히 3등급 상단~2등급 하단에서
좀 처럼 등급 안오르는 분들은 ...
점 찍어서 그래프 그리는 연습이
많이 부족한 경우가 많습니다.
이거 고치면
최소 3점에서 최대 6~8점까지
오르는 경우가 많으니 ...
그래프를 꼼꼼하게 그리는 연습을
좀 더 하셔야 하고요.
아래는 2025 이동훈 기출의 해설 입니다.
깔끔하죠 ?
ㄱ.
아래는
2025 이동훈 기출 수학1 평가원 편에
수록된 교점 처리에 대한
이론 설명입니다.
자 이제 사이값 정리가 적용된
미적분 문제를 하나 살펴보겠습니다.
10년 전 문제인데요 ...
이 주제에 대한 고전 이라고 봐야겠죠.
ㄱ, ㄴ, ㄷ의 문제 구조에 대해서도
두 개의 곡선 -> 교점(ㄱ)+방정식연립(ㄱ) -> 사이값 정리(ㄴ)
구조가 9년 사이에 바뀌었나요 ?
(순서 정도는 바뀔 수는 있어도 ...)
똑같죠 !
수능은 ...
그냥 never ending, same story 거든.
나 같은 (연습을 많이 한) 사람은
함수 준 것, 문제 구조 보면
딱 보이거든.
어떻게 풀어야 하는지가.
여러분도 이렇게 하셔야 하겠고요 ...
이런 구조에 대한 이해가 없이는
수학을 잘 할 수는 있어도
수능 시험에서 고득점/만점 받는 건 쉽지 않은 일이죠.
그리고 평가원 기출은
(교사경 기출 포함해서...)
반드시 31 년 전체를 풀어 주어야 합니다.
최근 몇 년 간 ...
이렇게 하시면 수능 날 곤란할 수도 있으니.
아래는 맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄴ에 대한 해설 입니다.
(수식을 이용한 해설 또한
2025 이동훈 기출에 수록되어 있습니다.)
수식 보다는
역시 기하적인 관점이
좀 더 출제 의도에 가깝다는
생각이 지금도 듭니다.
ㄴ.
아래는 2025 이동훈 기출 수학1에 수록된
볼록성+직선의 기울기에 대한
실전 개념입니다.
이 주제는 미적분에서
도함수/이계도함수의 관점에서
다시 다룹니다.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
보기 ㄴ에 대응되는 미적분 문제입니다.
차이점 이라면
볼록성+직선의 기울기 에
평균값 정리가 결합된 것 인데요.
이에 대해서는
2025 이동훈 기출 미적분에서
아주 자세하게 다룹니다.
아래는 위의 ㄷ에 대한 해설.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대한 해설입니다.
ㄷ.
아래는
맨 위의 수학1 ㄱ, ㄴ, ㄷ 문제의
ㄷ에 대응되는,
이차함수의 대칭성을
이용해야 하는 문제 입니다.
대칭축에 대하여 두 점이 서로 대칭이다.
이 주제에 대한 문제는 워낙 많은데요.
그 중에서도 가장 이 주제가 잘 드러난 문제이고 ...
두 점을 서로 대칭이동시켜보는 연습이
얼마나 중요한지를 알 수 있습니다.
사실 좀 더 깊게 들어가면
곡선 위의 점의 이동 (평행, 대칭)까지
생각해주어야 하기도 합니다.
아래는 위의 문제에 대한 해설.
오늘 다룬 주제들은 ...
2025 수능에서 반드시 나옵니다.
라고 말한다면
굉장히 높은 확률로 맞을 것입니다.
이 주제들을 꼭 익혀두시고 ...
다른 주제들도 완전 정복 하시길 바랍니다.
다음 주에도 또 만나요 ~!
ㅎㅍ~
2025 이동훈 기출 사용법 (+실물사진)
2025 이동훈 기출 실전 개념 목차
(참고로 2025 이동훈 기출은 수분감 + 뉴런 포지션 입니다.)
[이동훈t] 학습법, 수학 칼럼 링크 모음 ('23~'24)
고1 평가원 기출문제집 (PDF 무료 배포)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
점공 질문 0
19~23등이 개 허수인데 믿어도 되는 거 맞나요 .. ㅋㅋ 점공
-
찡찡대고싶다 0
찡찡
-
걔네들은 문제 풀때 고민을 거의 안함 오르비에 출몰하는 백점 1~2회 친구들(나...
-
엔수했으면 ㅇㅇ
-
너무 찡찡거렸나 싶어서... 그래도 한 손 넘게는 셀 수 있음
-
+ 내신 있는 달은 일요일 근무 추가해서 1개월 60만원...학비 X 월세 X...
-
집안의 최고학벌을.
-
어차피 대학다니면서 멀어질 친구였다고 생각함..
-
ㅇㅈ 12
그것은 바로 오늘의 플래너 실수로 사진이 안올라가서 식겁했네
-
막상 대학교 다니면 생각 안 나는 것 같음 취준할 때는 또 모르겠네
-
ㄹㅇ
-
20대 중반부터는 확실히 10대 후반같진 않네요 ㅠ
-
오르비하는 지방출신 애들은 앵간해서는 본인일걸 서울출신은 당연히 아닐것같고
-
밥 사줄테니 아는 척만 해다오…
-
학교 생활 아무 문제 없었다. 근데 사수붕이는 학교 생활 어케하냐?
-
2학년다니면서 수능 딸깍치고 커하뜨고 모든 운이 맞아서 딸각 입학마려움 ㅋㅋ
-
학교를빛내주기를
-
수능은 잘볼 수 있는듯 요구하는 것도 차이가 좀 있기도하고 요새 실모들이 31...
-
도형맛집
-
특히 나처럼 재수조차도 잘 안 하는 꼴통 동네 출신이면 더더욱
-
넘 계집행동했나,,,,, 옵스타이야기임,,, 계집아니고 씹게이니까 오해놉
-
'내란 특검이 왜 필요하냐면‥' 국회 온 대법관 말끔한 설명 [현장영상] 0
https://n.news.naver.com/mnews/article/214/0001399631
-
울었어
-
선착순 1명 6
1, 2중 1택 ㄱ
-
N수 체감 1
05:걍 형,누나하면서 동갑이나 다름없이 지낼듯 04:약간 무섭긴하지만 05분들이랑...
-
전과나 이중으로 스모빌 못들어가나요?
-
시발 국어는 1학년때부터 백분위 97 밑으로 떨어진 적 없고 영어도 항상 90...
-
어캄
-
ㅈㄱㄴ
-
윤도영 라이브반 복습영상 안 준다던데 사실인가요
-
뭐땜에 댓글 반응이 저런거지?? 오르비도 하도 안하니 잘 모르겠네;;
-
?? 너무 차이나는데??
-
민주당이 입법 폭주를 했다 ‘치자‘ 그래서 경각심 주려고 계엄했다고? (귀류법임)...
-
4수부턴 거리감 느껴지긴 할거같음 갠적으론 현역인데 사회성 ㅈ박은 나같은 사람보단...
-
하려면 신체검사같은거 받아야하는걸로 아는데 신체검사 받고 선정되면 두 번 왔다갔다...
-
이거나 따볼까 11
-
1. 남생각 안하고 본인만 아는 이기적이거나 내로남불인 사람 -> 내가 관심이 없는...
-
군 문제라기엔 제 또래 여자분이 추천하시길래 지금 공부하고 응시하면 뭐가 좋은지 궁금합니다
-
ㅋㅋㅋㅋㅋ 좀 들어와라 희망 갖게 하지말고
-
삼수생이랑 내적 거리감 느껴질 것 같은데 어떡하지 친해질 수 있으려나 ㅠㅠ
-
NOT YOU
-
한 번 풀어볼까 생각을 3년동안 해본 듯
-
첫사랑썰 재업 6
우린 고2겨울방학때 만났음 대성 마이맥인강을 들으며 만났고 3주동안 데이트를 했어...
-
다들 이런식으로 공부해보세요 효율굿
-
지금 기분이 오묘해요 22
물론 서울대 가니까 기분은 좋은데 중요한건 내가 재수생이란 거임...... 내가...
감사합니다 도움많이됏급니다