학생들 95%가 잘못 아는 수학 개념
바로 ‘치환적분법‘입니다.
제가 매년 학생들을 가르치면서 느끼는 건
이 개념에 대해서 제대로 이해하고 있는 학생이 거의 없다는 겁니다.
치환적분법은 얼마든지 고난도 문제로 출제될 수 있고, 출제된 적도 많은데도 말이죠.
자기가 이번 수능에서 수학 1등급 꼭 받아야한다는 학생들은 아래 영상을 꼭 참고해보세요.
제가 서울대반, 의대반 강의할 때도 학생들이 듣고 깨닫는 게 많다고 했던 내용을 담았습니다.
<치환 적분법 핵심 오개념>
1등급들은 다 되는 메타인지 나도 기르기
1달 만에 6000명 돌파한 저의 유튜브 구독자 이벤트 중입니다!
서울대, 의대생들이 썼던 ‘공진단 체크리스트’를 무료로 나눠드리고 있습니다!
내가 공부를 잘 하고 있는지, 못하고 있는지를 자동적으로 확인하실 수 있습니다! : )
더 구체적인 내용은 아래 영상 참고해주세요 :)
0 XDK (+10)
-
10
-
어디가서도 배울수 없는 엄청난 수능형 사고방식을 담아둔 책임? 신이 내린 엄청난...
-
군입대하고 신병휴가를 수능에 맞춰서 나가는거지 이론상 완벽할지도
-
연리 65.7%가 여러분을 기다립니다
-
션티 풀커리 0
션티쌤으로 시작하면 풀커리 타는 게 좋나요?
-
얼버기 1
이정도면얼버기.
-
밤샜음 9
자야하는데
-
여캐일러 투척 7
화2 정복 8일차
-
잇올도착 4
투데이 스타트
-
캬캬캬
-
ㅋㄷ 3피스 팔아요?
-
과외때메 수학,생명은 공부할건데 화학도 해야되나 화학은 과외 수요가 없을거 같은데
-
현강 토리님들 곧 오리진 끝나고 본편가는데 필기도구 뭐뭐 쓰나요?? 알려주시면 천사 ㅠㅠㅠㅠㅠ
-
막히고 숨이 잘 안쉬어지는데 (ㄹㅇ임) 비정상임? 악깡버 하면서 스스로...
-
지구과학 질문 1
반수할건데 아직 확정되지는 않아서 메가패스는 안샀는데 지구과학 독학 가능함?...
-
최초합 가능한가여…?
-
인하대 조발 0
하루라도 땡기면 안되냐
-
춥다 추워 2
-
얼버기 7
한시간 정도 잤네용
-
오야스미 2
네루!
-
ㅈㄱㄴ 현역 기공붙엇는데 반수생각중이라
-
얼마만이냐
-
돌아오기까지가~~
-
얼버기 엄벌기 4
피고내
-
싸펑 엣지러너 11
대충 먼내용이죠
-
내가 텍스트로 읽는게 더 좋아서 그런지는 모르게ㅛ는데 웬만한 실전개념서 중에는...
-
김승리 질문 1
김승리쌤 문학이 말이 많던데 어떤가요? 저는 왜 그런지 이유를 확실 하게 파악해야...
-
사탐 인강 6
과탐 보다가 이번에 사문으로 사탐런하려고 하는데 메가말고 EBS 수능개념 강의만...
-
잇올러 기상 10
완료
-
나 스스로가 타인에 비해 보잘 것 없이 느껴질때는 화도 많고.. 미워하거나 맘에...
-
연애 ㄱㄴ? 걸리면 쫒겨나나요?
-
얼버기 19
-
내가 생각하는 양의 이미지가 아니네 몸이 무슨..
-
다들 무시하는거 맘아프다.. ㅜㅜ 수능 좀 망해서 가긴 해도 경희대 좋아해서 난...
-
22학번 중대 경영을 현역으로 입학했습니다. 그러다 반수를 하고 실패해서 군입대를...
-
아가기상 6
모두 안뇽
-
.
-
풀고나니간 4
원래 줠라 화려한 풀이로 기억햇는데 이게 이거박에 안되? 이러다가 시간 다박아서...
-
무슨 1강부터 계산을 시키네 이거 뭐하는 과목임
-
이 풀이는 할게 산더미처럼 쌓여있지만 새벽에 미쳐서 밤을 새버린 대학생의 똥정도로...
-
내 인생이니까 맘대로 살라고 하시는 것 같은 학생 때는 조금은 뭐라 하셨어서 가끔 싸웠었는ㄷㅔ
-
인간주제에..
-
유도하고싶은데
-
히히 똥 히히 1
히히
-
해설써봄
-
수드라로 태어났으니 공부라도 열심히 해야지 ㅅㅂ...
-
얼버기 2
사실 안 잤어용ㅋ
-
얼버기 1
인 줄 알았으나 아직 안 잠
확통이는 스윽...지나갑니다
본질적인 이유는 이번 기회에 제대로 알았습니다만 선생님 근데 합성함수의 미분 꼴에서 g(x)를 T같은 걸로 치환했기 때문에 합성함수 미분 꼴에서 나올 g'(x)가 T'가 되서 1이 되니 사라진다는 건 알겠는데 그렇다면 그냥 g'(x)dx=dt라고 생각해도 큰 지장은 없는 것 아닌가요? 제가 수학 34등급이라 이해를 못한걸수도 있습니다 이해 부탁드립니다
"g'(x)dx=dt라고 생각"이라고 하셨습니다만
이게 오류이기 때문에 '생각'을 안 해야 받아드릴 수 있는 거랄까요?^^;;
적분에 ∫h(x)dx에서 h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
치환적분 처음 배울 때 학생들이 많이 혼란스러워하는 부분이기도 하고
고등학교 수학 범주 내에서 계산상으로도 비효율적이어서
혼란 해소 & 계산 효율 향상을 위해 알려드린 것입니다.
또한 제 경험상
많은 학생들이 이에 대해 고민하고 헤매다가 생각을 접고 그냥 받아드리는데
그 고민하고 헤매는 시간을 없애고
공부에 집중할 수 있도록 해드리는 것이 이 영상의 목적이기도 합니다 ㅎㅎ
(학생에 따라 이걸 상당히 오래 고민 경우도 있어서요)
또한 미분 적분에서 이런 기호 사용에 대해
헷갈릴 수 있는 부분이 정리되어 있어야
dy/dx를 본격적으로 다루는 고난도 문제 풀이도 받아드리기 좋다고 생각해요.
일변수함수에서는 마치 분수처럼 연산이 가능합니다. 우연의 일치이긴하지만 치환적분의 원리만 이해했다면 계산의 편의가 있는 문항의 경우 사용해도 무방하다고 봅니다
지나가던 학생입니다 입시생도아니라 딱히 할말은없는데 dt/dx가 분수는 아닌것은 맞으나 xyz그이상의 다변수함수가 아닌이상 분수처럼 사용해도 큰문제는 없는걸로 아는데 심지어 미분방정식 첫 시작할때 저런식으로 dy/dx쪼개서 넘겨서 쓰기도하구요
애초에 저게 분수가 아닌이유도 원래 분수처럼 라이프니츠가 쓸려다가 dt같은 무한소는 존재하지않는다는게 현대에 와서 밝혀졌고 그래서 분수가 아닌걸로 결론내려진걸로알고있고
xyz이상쓰는 다변수의함수에서는 저런 dy/dx가 벡터개념으로가기때문에 분수로 사용은 불가능한걸로알고
고등학교내에서는 심지어 대학과정에서도 다변수함수가아닌이상
(이부분은 제가 몇년전에 들어서 기억이 안나네요..) 이렇게 dy dx 를 쪼개든 분수처럼 쓰든 크게 써도 상관없는이유가 연쇄법칙쪽과 관련있어서 괜찮다고 알고있는데 굳이 분수아니다 라고 굳이할필요는 없지않을까요?
고등학교에서 라운드기호쓰는 편미분을 할리도만무하구요
맞습니다. 응앵웅웅님처럼 수학 실력이 좋으셔서
분수가 아닌 것도 알고 있고
미분 상황에서 분수처럼 써도 되는 이유까지 알고 있으면
전혀 혼란스러울 것이 없을 것입니다.
그런데 현장에서 학생들을 가르치다보면
이 부분이 납득을 못해서 혼란스러워하는 학생들이 굉장히 많습니다.
d/dx f(x) (=df(x)/dx) 기호 표현에서
d/dx 와 f(x)가 곱해져 있는 것으로 생각하는 경우도 많고
또한 이번 글에서 다루는 것처럼 치환적분할 때
정확한 원리에 대한 이해 없이
g'(x)dx=dt를 이용해서 문제를 풀다보니
이것 자체보다도
∫h(x)dx와 같은 형태에서
h(x)와 dx가 곱셈이 되어 있는 것이 아닌데
여기에서 갑자기 곱셈처럼 사용하니까
그동안 내가 적분 해왔던 건 뭐지?하며 혼란스러워하는 경우도 많이 봐왔고
혼란을 끝내기 위해
이해를 포기하고 대충 받아드리고 나니
dy/dx를 본격적으로 다루는 고난도 문제 풀이도
못 받아드리는 경우도 많이 봐왔습니다.
잘 아는 사람 입장에서는 쉬우니까 적당히 해도 좋을 것처럼 느껴지지만
(저도 대학생때까지는 그리 생각했는데 본격적으로 학생들을 가르치니 입장이 달라지더라고요)
잘 모르는 사람 입장에서는 미적분에 대한 수학적 사고 자체가 막히는 일이 발생해서
고난도 문제 다루기를 어려워하는 걸 보아 안타까운 마음에 얘기하게 되었습니다. :)
저도 chain rlue 생각해서 ㄱㅊ지 않나 싶었는데 선수를 뺐겼네여..
분수가 아닌건 알지만..고등학교 교육과정 내에선 분수로 생각해도 오류는 없다고 배우긴 했습니다