The most 중요한 things in Calculus
닫힌 구간 [a, b]에서 연속인 함수 f(x)와
f(x)를 도함수로 하는 함수 중 하나인 F(x)와
실수 a, b에 대해 다음이 항상 성립한다.
단언컨대 The Fundamental Theorem of Calculus는
미적분학, 돌아와 수학2와 미적분 (미적분1과 미적분2) 에서
가장 중요한 내용이라 말할 수 있겠습니다.
증명해봅시다.
적분 구간을 분할하고 평균값 정리를 적용하여
리만 합으로서 증명하는 방법이라 소개할 수 있겠다.
그런데 사실 미적분학의 기본 정리는 2가지이다.
이 또한 증명해보자.
p.s. 리만 합은 다음과 같다.
결국 우리가 수학2 (미적분1) 에서
다항함수의 미분과 적분을 배우기 전에
함수의 극한을 공부하는 이유는
미분과 적분이 모두
극한으로 정의되기 때문이다.
그에 따라 우리는 미분 가능성과 적분 가능성에 대해
논할 수 있다. 하지만 2015 개정 교육과정과
(아마도) 2022 개정 교육과정에서는
정적분의 정의를 엄밀하게 다루지 않으므로 (구간 n등분만 다룸)
적분 가능성을 다루진 않는다.
물론 함수의 극한 조차 엄밀하게 다루진 않지만 말이다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
근데 센츄보다 3
한뱃다는게 더 간지날거같애ㅠ
-
에피받고싶다 0
-
히히히히히히히히ㅣㅎ
-
에피 5
달려면 국수탐 백분위 합산 얼마인가요? 저거 간지나서 꼭 달고싶음
-
산타모자 없앴슴뇨
-
검1고출신자분들 1
설대 가면 점수 상관없이 cc나오나요
-
한다 vs 만다 투표좀 진짜 ㅈㄴ 개꿀알바같아서 고민중임
-
가족들이랑 얘기 해봤는데 뭔가 해내야만 할 것 같음
-
진학사는 4칸 뜨는데 텔레그노시스는 60프로 뜨네요 표본 많은 진학사를 믿는게 맞나요?
-
4칸합
-
하씨 전추까지가진 않겠지….
-
여친편입 학교 고르는중 취업할때 이득인점과 면접관이 보는 인식따졌을때 좋은 대기업...
-
문사철은 그 이하가 접수한다
-
ㅈㅅ 심심해서 어그로 끔
-
단국대 합격생을 위한 노크선배 꿀팁 [단국대25][천안캠퍼스 주변 원룸, 쉐어하우스, 오피스텔 총정리] 0
대학커뮤니티 노크에서 선발한 단국대 선배가 오르비에 있는 예비 단국대학생,...
-
대장님목소리 주거 퓨ㅠㅠㅠㅠ
-
관리자 필독 2
제 계정명의 빨리 바꿔주세요ㅠㅠ 메일로 신분증이랑 전번도 보내드렸는데… 에피도 달고...
-
마킹시간 2분 제하고 1시간 13분 시간 맞춰 푸는데 항상 타임오버돼서 삼중 지문...
-
수학 0
님들아 수학 어카노 본인 예비고3이고 고1때 내신 2등급이었고 모고는 항상 3등급을...
-
고3 현역 때 너무 놀기만 놀고 공부를 안 해서 올해 수능이 65547이...
-
수능만점자 오르비언 34
당신은 수능만점 성적표를 받은 날 이미 오르비에 수능만점 성적표를 과목, 표점...
-
저는 한 40분.. 수1 기준으로..ㅜㅜ 한문제당 한 3분 걸리는듯 노베의 슬픔
-
방법 좀 알려주세요
-
효율이 걍.. 너무개판임
-
설고성 최초합 연서한 추합 6관왕함 짝짝짝짝(이모지안되는거자꾸까먹네요..)...
-
3,6,9,수능은 다 풀어봄
-
당신이 투과목을 해야 하는 가장 근본적인 단일 이유 16
물화생지 모두 2가 1보다 재밌음 재미goat을 하셔야죠
-
https://orbi.kr/00070333256 꼭 보시기를 바랍니다.
-
수시 발표 전에는 4~5칸(불합~추합)권이었던 대학이 수시 발표 이후 최종컷과...
-
수의대 n수생 7
지거국 수의대 입학예정인 06입니다 지방 메디컬가면 n수 많다는데 보통 현역이...
-
물1화1 장점 17
-
언매vs화작 2
국어 선택과목으로 언매할까요 화작할까요? 추천좀
-
마지막에 붙여주는데 가야겠네..
-
와 86년생이라고? 이 얼굴이?
-
에타 보니깐 다 하지 말라고 하고
-
친구가 추천해줘서 시작해보려는데 아는 분 있으면 알려주세용
-
수능을 보고 나서 진로를 생각하다보니 의대를 가는게 제일 낫겠다는 생각이 들어...
-
국내 컴공/AI/보안 관련 대학교 평가가 어떤가요? 5
일단 공대 순위는 설카포연고가 대표적이긴 한데 실제 재학생들의 의견을 들어보고...
-
수능준비할때 5시간씩자고어케버텻지
-
뭐지
-
퍼즐 게임할사람
-
인가요?
-
미친 건훌 발견 0
-
상암 쪽 재종 2
근처에서 재종 다닐라하는데 달 100정도 생각중인데 어림없나요?? 이번에 이사와서ㅠㅠ
-
밤낮 또 바뀌것네
본문 내용과 관계 없긴 한데 태재대 다니시는 분들은 취업과 진로를 어디로 잡나요
각자 관심 분야와 관련된 활동들을 이어가며 진로 탐색 중에 있지 않은가 싶습니다. 이미 공부해온 것들을 바탕으로 기업을 이끌고 있으시거나 사업 관리 중이신 분들도 계시고 아이비리그 대학원 진학을 목표로 학점 관리와 진학 목표 분야 관련 활동 경험을 쌓아가고 있으신 분들도 계시고 외무관 등을 목표로 5급 PSAT 준비 병행하고 있으신 분들도 계십니다.
아직 개교한 지 1년도 되지 않았기에 2030년은 되어야 재학생들의 진로를 통계적으로 살펴볼 수 있지 않을까 싶고 각자 관심 분야가 다양해서 일반화하기는 어렵지 않을까 싶습니다.
Max xi를 norm of partition이라고도 하죠 그나저나 이 교육과정은 왜 구분구적법을 빠버린건지..
구간을 n등분하여 다루는 것은 15개정 미적분 교과서에 소개되어 있던 것을 확인한 기억이 있습니다만 partition과 sample point 도입하여 설명하는 것, 그리하여 적분 가능성에 대해 조금이나마 언급이 있었다면 더 좋지 않았을까 생각하고 있습니다
본문에 쓰신 f의 가정 하에, 고등학교의 구간을 n등분 한 리만합 정의가 일반적으로 임의로 분할을 한 리만합의 정의를 내포하는건 아닌가요? 아니라면 반례가 있나요?
제가 올바르게 이해했다면 "일반적으로 임의로 분할을 한 리만합의 정의"가 "구간을 n등분 한 리만합 정의"를 내포하는 것은 맞더라도 역은 성립하지 않는 것으로 알고 있습니다.
다만 고등학교 교육과정의 경우 연속 함수에 대한 적분만 다루어 항상 적분이 수렴하는 상황만을 다루고 있는 것으로 알고 있습니다.
그럼 연속 함수에 대해서 n등분 리만합으로 수렴을 하면 임의의 분할 리만합은 수렴을 하나요? 일반적인 상황 말고 연속 함수 가정에서 두 정의가 같은지 다른지가 궁금합니다
연속 함수 f(x)를 닫힌 구간 [a, b]에서 적분하는 상황이라면 구간을 어떻게 분할하여 리만합을 잡든 항상 수렴하는 것으로 알고 있습니다! n등분은 임의 분할 중 하나이므로 수렴한다 설명하면 충분할 것 같습니다만... 보다 자세한 것은 수학과 분들께 여쭤봐야할 듯요