책참 [1020565] · MS 2020 · 쪽지

2024-01-07 11:52:42
조회수 6,942

극좌표(polar coordinate)를 이용한 치환적분

게시글 주소: https://video.orbi.kr/00066457810

2차원에서 어떠한 점의 위치를 설명하려면


어떻게 해야할까요?


적당한 기준을 세운다면 우리는


점의 위치를 설명할 수 있을지 모릅니다.


대표적인 방법이 데카르트 좌표계, 바로


우리가 흔히 접하는 직교 좌표계입니다.



원점과 x축, y축을 설정함으로써 우리는


그림 상의 점 A, B와 같이 특정한 점의 위치를


깔끔하게 설명해낼 수 있습니다.



그런데 직교 좌표계 외에도 이렇게


기준을 잡아 평면 상의 점의 위치를 기술할 수 있는


대표적인 방법이 하나 더 있습니다.


바로 극 좌표계입니다.



원점을 O라 할 때 각 AOD의 크기를 alpha,


각 AOB의 크기를 beta라 한다면 우리는


방금 봤던 두 점 A, B의 좌표를 각각


다음과 같이 나타낼 수 있습니다.




r은 원점으로부터 각 점까지의 거리를, 


@는 시초선으로부터 동경까지 시계반대방향으로


잰 각의 크기를 뜻합니다.


이 r과 @값에 초점을 두고 다시 직교 좌표계에서


점을 나타내어 보면




이렇게 나타낼 수 있을 것임을


생각할 수 있습니다.


즉, 반지름의 길이가 r인 원 위의 점으로


주어진 점을 바라보고 일반각 하나를 잡아 


직교 좌표계의 점을 생각해볼 수 있다는 것이죠!



극 좌표계를 이용하면 2변수 함수의 적분을


다음과 같이 작성할 수 있습니다.




이제 1변수 함수를 다룰 때의 치환적분법을 다음과 같이 생각해보고




아직 제가 서술하기엔 어려운


transformation from the uv-plane (polar coordinate)


to xy-plane (Cartesian coordinate) 와




the Jacobian of the given transformation 에 관한


이해를 갖추면




극 좌표계를 이용한 치환적분을


일반화할 수 있습니다!





이제 이를 이용해 확률과통계에서 학습하는


정규분포를 따르는 연속확률변수의 확률밀도함수를


적분해봅시다!




이를 표준정규분포 N(0, 1^2)을 따르도록 해주면




확률밀도함수 g(x)를 얻을 수 있습니다.




현 교육과정 상 확통에서 표준정규분포를 따르는 연속확률변수의


확률밀도함수에 관한 위 성질은 배우는데 증명을 하지 않아


앞서 다루었던 다변수 함수에서의 치환적분을


적용해 해결해보고자 한다면



영상 속 과정을 따라 I값을 구한 후 




루트 pi로 나누어주시면 됩니다.



현재 2022 개정 교육과정 상 공통수학2에 


선형대수학의 기초인 행렬이 들어왔으니


2028 개정 교육과정 즈음엔 극 좌표계와


복소 평면도 들어와 학생들께서


2차원 평면에 대한 보다 다각적인 이해와


나아가 치환적분의 느낌을 다변수 함수에도 


적용해보실 수 있을 그러한 기회가 있었으면 좋겠습니다!!

0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.

  • 약연 · 1217741 · 24/01/07 11:54 · MS 2023

    확률밀도함수 적분이 이렇게 되는거군요!!
    엄청 신기해요
  • 책참 · 1020565 · 24/01/07 12:07 · MS 2020

    답글로 해당 게시글 링크 남겨드리려 했는데 벌써 확인해주셨네요!! 댓글로 설명하는 것보다 글 하나 남기는 것이 더 편할 것 같아 얼른 남겨봤습니다, 행복한 오후 보내세요~~

  • 약연 · 1217741 · 24/01/07 12:13 · MS 2023

    항상 도움되는 글 감사드려요 선생님

  • 책참 · 1020565 · 24/01/07 12:35 · MS 2020

    누구나 그럴테지만 수험생 분들께 무언가를 설명해드리거나 학습과 관련된 말을 건네드리고 도움이 되었다, 감사하다라는 말을 들을 때마다 참 행복하네요 ㅎㅎ 선생님께서도 꾸준히 수학에 관심 갖고 관련 글들 작성해주셔서 감사드립니다. 올해는 저도 기하를 열심히 공부해볼 계획이니 모르는 것 있으면 여쭤보겠습니다!

  • 약연 · 1217741 · 24/01/07 12:39 · MS 2023

  • 약연 · 1217741 · 24/01/07 11:56 · MS 2023

  • 응애... · 1233158 · 24/01/07 11:57 · MS 2023

    적분이 수렴하는지부터 따져야되지않나
    안따져도됐었나 기억이안나네

  • 책참 · 1020565 · 24/01/07 12:08 · MS 2020

    엄밀히는 수렴 여부부터 확인하는 것이 맞긴 한데 가우스 적분의 경우 루트 pi로 수렴하는 것이 널리 알려져 있다 보니까 본문에서는 생략 했습니다, 형님 말씀대로입니다