241128(미) 수식 풀이
일단 "모든 양수 t에 대하여 x에 대한 방정식 f(x)=t의
서로 다른 실근의 개수는 2"라는 정보와 "모든 실수 x에 대하여
f(x)>=0"이라는 정보, 그리고 "실수 전체의 집합에서 연속인
함수 f(x)"라는 정보와 x<0에서 주어진 f(x)식으로부터
다음과 같은 상황을 떠올릴 수 있어야 한다.
대충 f(x)의 그래프가 x<0에서는 감소하고 구간 [0, p]에서는 (p>0)
상수함수의 그래프를 보이다가 x>p에서는 증가하는 상황
2015개정교육과정 상 정적분은 닫힌 구간에서
연속인 함수에 대해 논하므로
다음의 두 함수를 정의해주자.
그러면 함수 g(t), h(t)가 정의된 방식에 따라
다음의 두 항등식을 얻을 수 있다.
이를 이용해 닫힌 구간 [p, 7]에서의 적분에
치환을 섞어보자! (치환적분법, 역함수를 이용한 치환)
부분적분법은 두 함수가 곱해진 꼴의 함수를 적분할 때
하나를 미분, 하나를 적분한 새로운 함수를 적분하는 상황으로
적분 상황을 바꾸어주는 방법이다.
x>0에서의 f(x) 식을 아직 알 수 없기 때문에
f(7)값을 직접 구할 수는 없다.
하지만 주어진 관계식 2g(t)+h(t)=k (t>0) 을
활용해보면
x=7과 x=(k-7)/2에서의 함수 f의 함숫값이 일치함을
확인할 수 있으므로 x<0에서의 f(x) 식을 이용하여
f(7)값을 구할 수 있음을 알 수 있다.
이제 주어진 관계식을 이용해주면
구간 [0, f(7)]에서의 함수 p(t)의 적분값만 구해주면
주어진 조건식의 좌변을 정리할 수 있다.
구간을 표기할 때 [-3, 0]처럼 해야지 [0, -3]은 안된다고
알고 있긴 한데 편의상 이 정도는 넘어가자
중간에 d(4x^2)=8xdx는 그냥 내가 쓰는 표현인데
대충 미분(differentiation) 말고 미분(differential)에 관한
생각을 이어와 dy=f'(x)dx 표기를 살려
치환적분법 적용할 때 표기를 단순화하는 방법이다.
어디서 배운 건 아니고 치환적분 문제 풀다가 만들었는데
떠올리기 어려운 것은 아니라 사용하는 다른 분들께서 계실 수도!
이제 조건식의 우변에 위치한 정보를 살리면
k값 후보가 2개 나오는데 아까
h(t)=7일 때 g(t)=(k-7)/2이었고 g(t)<0이므로
k-7<0이다. 따라서 k=5로 확정된다.
답은 2번이다.
+ 아니면 2g(t)+h(t)=k (t>0)로 x>0에서의
f(x) 식을 직접 구할 수도 있는데
2g(t)+h(t)=k 와 f(g(t))=f(h(t))=t 적용하면
각 구간 별 식을 논리적으로 작성해낼 수 있다.
직관적인 상황 파악을 위해 h(t)>0로 표기했지만
f(g(t))=t 에서 g(t)<0이므로 2g(t)+h(t)=k,
h(t)=k-2g(t)에서 h(t)>k임을 바로 확인할 수 있다.
k=5 대입하면 함수 f(x)의 그래프는 다음과 같다.
그럼 바로 f(9)=2x(9-5)xe^(9-5)^2,
f(8)=2x(8-5)xe^(8-5)^2 구해 답 낼 수 있다.
++ 이상입니다, 다만 저는 개인적으로
이것을 대략적으로 생각해내서 t값이 조금 증가할 때
x<0에서 주어진 f(x) 식에 따라 g(t)의 변화를 생각하며
h(t)의 변화를 따라가보는, 그렇게 하여
x>0에서의 f(x) 식을 추론해보는 사고 과정이
현재로서 가장 현장에서 시도해볼 만한 사고 과정이라고
생각하고 있습니다.
읽어주셔서 감사드립니다!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
와 큰일낫다… 5
잘멋하면 시대재종 못갈수도있겠는데…? 국어수학만 합쳐도 벌써 5네…
-
1일차 : 삿포로 시내 2일차 : 아사히카와로 이동, 택시투어로 패치워크의 길에...
-
과탐을 투과목 두개로 가는분들이 많이 계신가요??? 13
서울대만을 바라보는 분들인거죠???
-
와이어 꽂혀있는데 통신이 왜 안된다는겨
-
내 다음 닉은 2
전재우다. 동아리 멤버 구한다
-
덕코내놧 2
내놧
-
레어 팔아요 3
분자 레어 빨강머리 주황머리 칸나 다 팔아요
-
지금 예비고2이고 시발점 개정 듣는 중인데 이거 다음에 무슨 강의 들어야할지...
-
설마 아무한테도 안당했나..? ㅎㅎㅎㅎ
-
낮4도 아니고 중~높4인데 이정도면 개념만 돌린것 치고는 잘하는 건가요? 기출은...
-
[고려대학교 25학번 합격] 합격자를 위한 고려대 25 단톡방을 소개합니다. 0
고려대 25학번 합격자를 위한 고려대 클루x노크 오픈채팅방을 소개합니다. 24학번...
-
아직까진 모르는건가요
-
덕코주세요 11
잃어버린 마리 레어가 되찾고싶9나
-
한다면 언제할까 이번 금요일에라도 해주면 좋을텐데…
-
내신보는개잡대라그렁강
-
마트물류끝 7
할인코너 초밥=유일한행복
-
전주 물짜장 울면 우리집앞에새로생긴퀘사디아 처갓집슈프림양념치킨 치즈폭탄피자 왕만두...
-
수학 끝나고 복도에서 어떤 애가 수학 개쉬웠다 21번은 그거 서바에 사실상 똑같은...
-
대 예 린
-
와...... 6
진짜 #~#~~~~~###됐구나
-
https://orbi.kr/00071583724 처음써봐서 퀄은그닥인거같긴하지만...
-
식곤증 아으
-
하루에 국수영탐을 조금씩 나누는게 좋을까요? 뭔가 효율적이진 않어서 질문드려요
-
4월에 도쿄가야지 16
히히 계획 대충 다 짰다
-
근데 뭔가 클라이 맥스가 약한 느낌 마지막화도 클라이맥스가 아니라 2기 기대하게 하는 내용이고
-
뭔가 느낌상 현장에서 노래 들었을때 대충 이런 느낌인듯 홍광호: 신(지킬앤하이드...
-
칼럼은 아니고, 이번에 화2 수능을 보는 분들을 위한 내 생각이다. 내 생각이 정말...
-
제가 재수 비용에 보태려고 햇살론 유스 300만원 대출하려고 하는데, 이러면...
-
일병으로 ㄷㄷ
-
하루에 국밥 한 끼 먹으니 배부르네
-
갈비찜을 밥이랑 비벼주세요~
-
두두두두두두두두두두
-
지듣노 10
-
수학N제 추천 3
3등급정도여서 지-인짜 기본적인 게 필요합니다 추천좀 부탁드립미다
-
다시 빡집중할 수 있는 비결 같은 게 있나요
-
그냥 5
나의 자본력을 인정하고 편의점 가는 중
-
출처: 2024.11.2.시행 제 3회 서울특별시 지방공무원 임용시험 자칭 역덕들...
-
ㅋㅋㅋㅋㅋㅋ심지어지인과외라더빡세네
-
사탐런 하면 안되는이유 11
형광펜 17가지 색깔써가며 필기이쁘게하고 국어 수학 거르고 하루종일 사탐만하는...
-
물 정량보다 50미리 많게 새우젓 한 티스푼 다진마늘 두 티스푼 넣고 끓이면 요리가...
-
어텀킴!어텀킴!어텀킴! 20
차마 다른 사진은 못보여주겠음ㅁㅁ
-
돈까스 먹고 시픈데 10
김천 ㄱㄱ
-
사방 막혀있는 1인용 독서실인데 붙어있는 구조임 근데 대각선 위치에 있는데서 평소...
-
대형학원 알바라서 학생들 모의고사 데이터 정리하는데 55311 46311 이런...
-
흠
와! 스텔체스 적분 아시는구나!
맞다 d(f(x))=f'(x)dx 이거 용어가 있었죠!! 잊고 있었네요 감사드립니다 형님
통일~연세~~
예전 23.11.22 수식 풀이 칼럼 정말 도움되었습니다 선생님! :D
도움이 되었다니 다행입니다! 231122 수식 풀이의 경우 제가 발견한 것은 아니고 어떤 의대생 분의 풀이를 보고 공부하다가 '오 이건 더 많은 수험생 분들께서 공부해두시면 좋겠다' 싶어 수식편집기 이용해 정리해보았을 뿐입니다.
수학적 재능이 없다고 스스로를 생각하는 사람으로서 항상 '멍청한 풀이'를 찾길 좋아하는데 231122에서 g(x)를 구하는 것만큼 1차원적인 사고로 답을 낼 수 있는 풀이를 아직 찾지 못했다 생각하여 요새도 심심할 때 식 전개해 구해보곤 하네요 ㅎㅎ
새해 복 많이 받으시기 바랍니다, 올 한 해도 행복한 순간들로 채워가셨으면 좋겠습니다!
+ 마지막에 g(t)값 변화에 따른 h(t)값 변화에 초점을 두어본다는 맥락에서... 현장에서 문항 처음 봤을 때 주어지 관게식 보고 y=-2x (x<0)와 y=x (x>0) 의 그래프를 그려보셨다는 다른 분을 발견했습니다!
확실치 않지만 t값 변화에 따른 g(t)값 변화, 그리고 그에 따른 h(t)값 변화를 살펴보아 x>0에서의 f(x) 개형 혹은 식을 대략적으로 유추래보라는 것이 출제 의도가 아니었을지 싶습니다.
마치 2023학년도 수능 22번이 평균값 정리에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세울 수 있었지만, 그냥 f(x)=x^3+ax^2+bx-3 두고 수식으로 밀어서 g(x) 식을 작성해낼 수 있었듯이
2024학년도 수능 미적분 28번은 항등식에 초점을 두어 상황을 기하적으로 파악하면 f(x) 식을 세워볼 수 있었지만, 그냥 주어진 정적분을 x=h(t)로 치환한 후 2g(t)+h(t)=k 이용, 그리고 다시 g(t)=x로 치환한 후 8x*e^{4x^2}를 치환적분을 통해 계산하여 k값을 결정할 수 있었던...
그러한 비슷한 맥락에서 바라볼 수 있지 않을까 하는 생각이 듭니다!