Farewell[1] : 초전도치
약간의 변심으로, 간단한데 임팩트 있는 스킬 뿌려 놓고 가겠습니다. 은퇴선물..?
제가 풀이 칼럼을 올리지 않은 시점부터 만든게 많은데, 다 끌어안고 가려고 했다만, 저한테 무슨 느낌의 스킬들이 있었는지 적는것도 나쁘지 않을 것 같아서요. 다 계산을 최대한 쉽고 빠르게 하는 방법론이었어요. 이 스킬은 과외 수업 도중 발견한 스킬로, 이름도 그 수업하던 학생이 이렇게 하자고 했습니다.
뭐 아무튼, length(Farewell)=3으로, 다음 글이 마지막 글입니다.
이걸 원래 쓰는 분이 계셨을수도 있고 아닐수도 있고.. 뭐 아무튼, 이제는 제가 글을 올려버렸으니, 산화수에서 산화수법으로 풀어야 하는 문제에 한해서 이렇게 풀지 않으면 손해가 생길겁니다. 원래 이렇게 풀던 분이 있던 없던, 이 풀이도 공론화가 된 풀이는 아닌 것 같기 때문에..
앞으로 이 풀이를 보면 어 초전도치 아니냐? 해주시면 감사하겠습니다.
중요한 부분이 있는데요,
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
산화수법으로 풀어야 하는 문제에 한해서
이 방법은 초전도체입니다.
전하량 보존으로 풀 수 있는 산화수 문제의 경우 이 스킬을 사용하면, 전하량 보존을 사용했을때보다 계산량이 같거나 아주약간 큽니다.
이것만으로도 좋긴 합니다. 보통 전하량 보존이 너무 유리하거든요. 산화수법이 유리해 보이는데? 싶었는데 알고보니 전하량 보존이 더 유리했으면 지옥의 계산을 경험하신 학생들이 많을겁니다.
이해하기 쉬운 내용이니, 문제 하나로 끝내겠습니다.
그 전에 간단한 개념 설명을 하겠습니다.
우선 산화수법을 우리가 어떻게 사용하는지 봅시다.
산화수가 변화하는걸 화살표로 표현하고, 원자 A, B가 산화환원 반응에 참여한다고 생각합시다.
그럼 다음과 같이 표기할 수 있을겁니다. 다음 상황은, 원자 A는 산화수가 -1에서 3이 되고, 원자 B는 산화수가 4에서 2가 되는 상황입니다. 그러면 산화수와 계수를 맞추면...
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이렇게 표시할 수 있겠죠.
바로 일반화 들어갑니다.
A: a -> b (x m)
B: c -> d (x n)
이런 산화수 변화 상황이 있다고 합시다. 이 식이 성립하려면
n(c-d) = m(b-a) 가 성립해야 할 겁니다. (산화 환원 여부를 몰라도 부호만 반대면 되겠죠?)
전개합니다.
ma + nc = mb + nd
이 꼴이 나오는데요, 다시 위의 예시를 들고와서 이게 뭔 뜻인지 살펴보면..
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
일반적으로 알려진 방법 대신,
-1 x 2 + 4 x 4 = 3 x 2 + 2 x 4
이런 식으로 왼쪽끼리 곱해서 더하고, 오른쪽끼리 곱해서 더하고.. 를 확인하는 식으로도 산화수 매칭이 성립하는지 확인할 수 있습니다.
일단 이것만 보면 별거 아닌데요..
이항이 가능합니다.
(이래서 이름이 초전도치)
뭔 소리냐면
A: -1 -> 3 (x2)
B : 4 -> 2 (x4)
이걸 A쪽은 -1을 이항하고, B쪽은 2를 이항합니다.
A: 0 -> 4 (x2)
B : 2 -> 0 (x4)
이러면 암산으로도, 이 산화수 매칭이 성립한다는게 확인이 가능하네요.
뭐 아직도 별거 아닌것 같습니다. 이 스킬은 문자가 포함되어 있을 때 그 진국이 나오는데..
이 문항 하나로 끝내고, 여러분들이 연습을 해 주시면 될 것 같습니다.
이 문제가 대표적인 "산화수법이 유리한 문제"인데요,
두번째 조건과 반응식에서 Y의 산화수를 확인하면 우선 다음과 같이 표현할 수 있습니다.
X : ?(m으로 표현됨) -> +n (x1)
Y : +n-1 -> +n (x3)
그리고 세번째 조건을 사용하면 다음과 같이 산화수 변화를 표현할 수 있습니다.
X : +3(n-1) -> +n (x1)
Y : +n-1 -> +n (x3)
여기서 한번 암산으로 어떻게 이항 하면 이쁘게 풀릴지 생각 해 보시는걸 추천드립니다.
(스포방지용 간격)
왼쪽에 n, 오른쪽에 상수를 몰아주는 편이 제일 좋습니다. 이러면 추가 이항이 안 생깁니다. 다음과 같이요.
X : 2n -> 3 (x1)
Y : 0 -> 1 (x3)
이제 (물론 암산으로 충분하지만)
2n x 1 + 0 x 3 = 3 x 1 + 1 x 3
이므로 n = 3입니다.
축하합니다. 이제 여러분들은 231114와 그 강화형 문제들을 암산으로 푸실 수 있습니다. 물론 굳이 암산으로 할 필요는 없고 위 처럼 정형화된 틀에서 이항시켜서 문제를 푸시면 됩니다.
한번 N제를 꺼내서 산화수법 문제를 풀어보면 231114보다 체감상 차이가 더 심할겁니다.
꼭 체화하고 쓰시길 바랍니다. 알고 모르고 시간차가 꽤 납니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
사문 39점인데 사문 2가 떠야 최저를 맞추는데 다들 어떡하셨을 건가요? 일단...
-
나가고싶은데 1
귀찮음
-
할일도없고
-
84가 될 확률이랑 92가 될 확률이 비슷해보임
-
고3 담임 쌤이 상담 때 말해줌
-
마음껏 해주세요 수위제한X
-
근데 다들 저 모르실듯
-
배신한 아내에 재산 빼앗긴 '퐁퐁남'…근조화환 뜬 네이버 결국 2
여성혐오 표현으로 논란을 불렀던 아마추어 웹툰 ‘이세계 퐁퐁남’이 네이버웹툰...
-
엽떡 맛있당 1
굿
-
그럼개꿀인데
-
#~#
-
오늘 오전에 열린 의협 비대위 브리핑에서도 협회장이 신입생 모집정지를 외치셨는데,...
-
배고프신분? 8
으히히히히히히히히히
-
이러다가 쪄 죽겄다
-
다시 집 주소로 옮길려하는데 어캄
-
폰잘알 있나요? 4
지금까지 쓰던건 아이폰11이고 이제 16 or 16Pro 갈아탈려고 하는데 어떤게...
-
essence 12] 같은 단어를 대상으로 형태적인 차이를 만드는 이유, inflection에 관하여 0
같은 단어를 대상으로 형태적인 차이를 만드는 이유는 무엇일까요? 텍스트에서 단어의...
-
그래서 s뱃만 보면 너무 부러움
-
바로 스카로 출발
-
헤헤
-
올해 확통 1등급 비율.. 0.5퍼는 되려나
-
기하 질문 4
기하 단원마다 독립적인가요? 아니면 앞단원 학습 안하면 뒷단원 못하는 구조인가요?
-
닭강정먹고싶다 8
ㄹㅇㄹㅇ
-
시루스 등장 4
컨버전스홀 3층 어딘가
-
습하습하~ 2
습하손익 습하손익 어~
-
제가설의를꿈꾸어도될까요 10
우우 미필5수지사약따리 수학86점영어2지II2등급따리도 +1수로 설의를...
-
이걸 직업으로하긴 좀 그렇지만 알바하긴 괜찮은듯. . 한번시킬때 3,4천원이니 ㅋㅋㅋ ㅠ
-
사탐 백분위 99 95 인데 어떤게 유리?
-
최소한 팩트로 훌짓을 하든지 말같지도 않은 소리 좀 하지마라 다른거 다 그렇다 쳐도...
-
교차해서 온 협문에 희망은 없다.. 사실 근데 연뽕 고뽕 차고 싶으면 와도 됨...
-
하 벽느꼈다.. 3
같은반 친구가 올해 수능 수학시험지 가져와서 30분컷내고 다맞추는거보고 심란해짐..
-
학교에서 진행하고 있는 프로젝트인데, 주제가 수능 관련된 것이라 오르비언들의 힘을...
-
이원준<<국어강사goat
-
마킹 실수함 0
미적분 풀거 다 풀고 검토하는데 미적 24번을 잘못 계산한거임.그래서 그걸...
-
라는 생각을 하는 중
-
화작87 0
2될만한가요? 희망이 있을려나요 ㅜ
-
그건 바로 ‘천원돌파 그렌라간’ 진지하게 자기계발서 10권 읽는 것보다 이 애니...
-
이걸 어케 예측하지 22수능 기준 백분위 나쁘진 않은 12211이 고대 어문 꼬랑지...
-
지난주 떠올려보면 국어 파본 볼 때 가나형 앞으로 온거 확인하고 순서 조정하려고...
-
심심한데저한테질문을해주세요
-
맥도먹어야지 0
기분이 안좋을땐 맥도날드야
-
메디컬은 목표 자체에 없고 공대가 목표라서 그러는데 괜찮을까요?
-
엽떡 먹어야지 8
기부니가 안조을때는 엽떡이야
-
존나아파
-
군대도 안 갔다와서 미칠 것 같음 무슨 자신감에 4수를 한 건지도 후회하고 있음...
-
어떻게 될까요
-
미적 백분위 97 화1 만점 지1 백분위 99 인데 화학이나 수학 과외하고 싶은데...
-
다리 예쁜 남자 11
개 ㄹㅈㄷ
-
2026 수능준비 바로 N제부터할거임 개념기출커리 또 탈거임
존경합니다 논화님 바로 개추 와바박 박았습니다
Goat...
ㅅㅂ 화학은 이런것까지 해야하는구나 역시 물리가 답이네
물리나 화학이나..
역시 수능 화학은
이런 기괴한거까지해야하나
잉 진짜 쉬운데 걍 이항하고 곱하면 끝나니깐..
화2 칼럼도 부탁드립니다
쉽고좋은데 댓글공작오지네요 저런거때문에 회학선택자 줄어드는거임
지금까지 올린 스킬중에 제일 쉬움ㅇㅇ...
그러면 화학이 ㅈㄴ어려워서 하면 안되는 과목같잖아요;
초전도치야 고마워!
진짜신기하네요
처음엔 어 은근 복잡하지 않나? 싶었는데 이항이 되는게 진짜 괜찮네요 좋은 스킬인듯 ㅎㅎ
초전도치야고마워
이게 개쓸데없는 지엽스킬처럼 느껴진다면 기출/n제 학습을 안해본게아닐까요
이거보다 쉽게 설명할 수 있는 방법도 없고 적용 방법도 간단하고 여타 강사들마냥 스킬 사용 조건 대충 규정해놓은 것도 아니고 스킬 사용시에 유의미한 시간절약이 가능하고
원래 과탐 영역에서의 스킬이라는 게 “훈련되면 특정 상황에서 무지성으로 적용”해서 시간을 절약할 수 있기 때문에 의미가 있는 것인데(평소에 사고력을 사용해서 푸는 데 걸리던 시간을 절약할 수 있으므로) 그 의미와 필요성에 대해 스스로 생각을 안 해보는 사람들이 생각보다 많음
미지수가 있더라도 이항한 결과를 적어서 세로로 계산하는 것보다 산화수 차를 바로 계산하는게 더 빠르지 않나요..? 위 상황에서도 산화수 차가 2n-3, 1인게 바로 보이고요..
저문제가 쉬워서 그럼