[이동훈t] 수학 22번 구조 분석
2025 이동훈 기출
안녕하세요.
이동훈 기출문제집의
이동훈 입니다.
오늘은 화제의 문제
수학 공통 22 번에 대해서
ssul을 풀어볼까 ...
하는데요 ...
그 전에 ...
2025 이동훈 기출문제집
교사경 수학1+수학2, 미적분은
이미 판매 중입니다. (아래)
-단품
2025 이동훈 기출 수학Ⅰ+수학Ⅱ 교사경 편 34,000원 (오르비 할인가 30,600원) 판매중
2025 이동훈 기출 미적분 교사경 편 33,000원 (오르비 할인가 29,700원) 판매중
-세트
2025 이동훈 기출 수1(교)+수2(교)+미적(교) 56000원 판매중
(각 과목당 약 18000원 꼴)
판매 사이트는 아래
아래의 세 타이틀은 11월 27일(월)에 예판을 시작할 예정입니다.
(세트 상품도 함께 예판을 시작합니다.)
- 단품
2025 이동훈 기출 수학Ⅰ 평가원 편 (+실전이론 포함)
2025 이동훈 기출 수학Ⅱ 평가원 편 (+실전이론 포함)
2025 이동훈 기출 미적분 평가원 편 (+실전이론 포함)
-세트
2025 이동훈 기출 수1(평)+수2(평)+미적(평)
2025 이동훈 기출 수1(평)+수2(평)+미적(평)+수1/2(교)+미적(교)
아래의 두 타이틀은 12월 6일(수)에 예판을 시작할 예정입니다.
(세트 상품도 함께 예판을 시작합니다.)
- 단품
2025 이동훈 기출 확률과 통계 평가원/교사경 편 (+실전이론 포함)
2025 이동훈 기출 기하 평가원/교사경 편 (+실전이론 포함)
-세트
2025 이동훈 기출 수1(평)+수2(평)+확통(평/교)+수1/2(교)
2025 이동훈 기출 수1(평)+수2(평)+기하(평/교)+수1/2(교)
사정상 2~3일 빠르게 또는 늦게 예판이 시작될 것입니다.
최대한 빠르게 시작할 수 있도록 노력하겠습니다.
그리고 ...
2024 수능 수학 각 문항별 분석은
2025 이동훈 기출문제집 전 타이틀 출시 이후에
진행하도록 하겠습니다.
일단 올해 수능 총평은 ...
(1) 수능 답게 잘 만들어졌다.
(2) 작법(작풍)의 변화가 없다.
(실험적인 문제 없음.)
(3) 간접 출제 범위 (중등, 고1)에 대한
비중은 작년 수능과 엇비슷하다.
(개인적으로는 ...
이 부분에서 실험적이면서도
강렬한 문제를 기대했는데
아마도 최종 과정에서
싸악~ 제거된 거겠지.)
(4) (여전히) 옛날 기출도 중요하고,
최근 기출도 중요하고,
교육청, 사관, 경찰 기출도 중요함.
예를 들어 22번은 올해 고2 교육청 기출에서
영감을 받은게 아닌가 합니다.
아래서 설명하겠지만.
(5) 실전이론 여전히 중요하다.
미적분 30번은 변곡접선을 소재로 하고 있고,
이에 대한 연습을 한 수험생이 많이 유리합니다.
그리고 올해는 삼도극, 삼차함수의 비율관계, ...
등등 ...
볼멘소리 나올까봐
싹~다 판도라의 상자에 봉인시켰는데 ...
내년도 정치적 상황에 따라
(총선, 부동산PF, ...)
카와이한 악귀들이 대방출 될 수 있으니 ...
2025 수능 대비하는 분들은
가리지 말고 다 풀어야 겠습니다.
아니 ... 뭐 ...
올해 수능 당황스러웠다고
말하는 분들도 있는데
지금 돌아가는 상황보면 ...
내년은 더 당황스러울 가능성이 높아요 !?
다- 풀어야 합니다.
아멘.
이제 ...
22번 보시면요.
난 이 문제 보자마자
아래 문제 생각나던데.
올해 고2 9월 문제인데요.
이산으로 주어진 고2 문제를
연속으로 바꾸면 수능 문제가 됩니다.
이산과 연속은 고등학교 수학 교육과정에서
반드시 익혀야 하는 중요한 개념이고 ...
이를 문제 제작에 활용한 경우라
볼 수 있겠습니다.
22번의 짧은 풀이를 함께 보시면 ...
이 문제를 읽고 나서 다음과 같은 과정을 거쳐야
기출 학습을 제대로 한 것입니다.
(0) 문제에서 주어진 조건의 대우 명제를 쓴다.
(1) 두 점
(-1/4, f(-1/4)), (1/4, f(1/4))
이 주어졌고, 함수 f(x)는 연속함수이므로
구간 (-1/4, 1/4) 에서의
그래프의 개형을 먼저 생각한다.
(미적분에서 집합은 풀이의 단서가 된다고
저는 항상 강조합니다.)
(2) f(0) > 0, f(0) = 0, f(0) < 0
의 세 경우로 나누고
귀류법+사이값 정리로
f(0)=0 임을 보인다.
좀 더 자세히 설명하면
f(0) > 0 이고,
x->-inf일 때, f(x)->-inf
이므로
사이값 정리에 의하여
함수 f(x)의 그래프는 x축과 만난다.
이때, x절편의 값이 0- 에서 -inf 까지 변화시키면
맨 위에 (0)을 만족시키지 않음을 확인할 수 있다.
마찬가지의 방법으로
f(0) < 0
일 수 없다.
따라서 f(0) = 0 이다.
함수의 그래프의 개형을 그릴 때,
x절편, y절편을 찍는 것이
도함수/이계도함수/점근선에
우선함을 평가하고 있음.
(3) (2)와 마찬가지의 방법으로
함수 f(x)의 x절편을 변화시키면서
가능한 경우를 찾으면
위의 풀이처럼 세 가지의 경우가 나온다.
1번은 당연히 아닐꺼고
(과잉 조건일 가능성이 높으니까.)
2번 또는 3번이 답인데.
어느 쪽을 먼저 하는가에 따라서
계산 시간 30초 정도를
단축할 수 있다.
이 문제는 귀류법을 이용한
그래프의 개형 그리기에 대한
전형적인 문제로 ...
작법의 관점에서 새로움이 없습니다.
그러므로
문제 풀이에도 새로움이 없습니다.
자 ... 그러면 ...
22번은 킬러 일까요 ?
이 문제는 킬러가 맞습니다.
왜냐하면 올해 수능 30 문제를
난이도 순으로 쫙 나열하면
가장 어려운 문제가 될텐데.
가장 어려우니 이 시험의 킬러이지요.
최상위권까지 변별해야 하는 시험에서
킬러가 없다. (또는 없애야 한다.)
라는 가정 자체가 잘못된 것이니까요.
다만 과거 수능에서 출제된 ...
야수성 넘치는 킬러와는
비교하기 힘들 정도로
맥이 많이 빠진 킬러라고 생각합니다.
수능 치루신 모든 분들 수고 많으셨습니다 !
.
.
.
다음주에는
2025 이동훈 기출문제집 고1 수학 PDF가
공개되니 많관부 !
ㅊㅊ
2025 이동훈 기출
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
킬러파트만 주구장창 파다보니까 기출한번 했던 앞당원 부분 내용 조금씩 까먹는데 이게...
-
평가원 10.06 수리(가), 만점자 20명, 표점 172점 고3 교육청까지...
-
중간 카트에 숨어 있으면 아무도 모르겠지?
-
좋은 것 같고 좋을 것 같음
-
분명 세상에 존재하는 일인데도 믿기지 않음 범부의 뇌로는 그 30%만 이해해도 뇌가...
-
남친여친대학 빼고 다 있음
-
서강대 합격생을 위한 꿀팁 7 [서강대 25][Tip.7] 0
대학커뮤니티 노크에서 선발한 서강대 선배가 오르비에 있는 예비 서강대생, 서대...
-
헉
-
나도 장기자랑 2
장기입니다.
-
역대 커하 국어 98(9평) 수학 97(10모) 영어 원점수98(9평) 물리...
-
이왜진?
-
ㅇㅇ
-
외모성격남친여친행복자존감빼고 다가졌다
-
나도 자랑해봄 7
자랑 풉
-
암것두없는건 머임요
-
대부분은 절대 없을 스펙이 있음 하지만 절대 신상을 까지 않을것
-
빨리 자라 0
거북이
-
나도 자랑 한 번 21
재수 때 공부 시작해서 중앙대 삼수 후 지금 이정도면 꽤 괜찮은거같아
-
5네
-
이명학 신텍스 강의는 2026으로 교재는 2025로 해도 별 문제 없을까요?
-
시험 전날까지 물리책 한번도 편적 없엇는데 앞에앉은 친구가 공부좀 하라면서 시험...
-
ㄱㄱ
-
지금 내앞에 뜨거운물을 넣고 2분간기다린 육개장이 있지 하하하
-
2등 해봣다 먼지는 비밀이다
-
수학나형의최종보스...
-
ㅇㅇ;;;
-
히히헤헤하하
-
6모 국어 높2 9모 국어 높3 수능 국어 백분위 98 저능하지는 않다고 생각한다...
-
탄 거 아니고 마이아르된거임.
-
쇼츠, 디스코드, 레딧 무한반복
-
전 쌍꺼풀 + 165이상 이상형이니까 맘껏 댓글로 고고
-
내일이 벌써 걱정되는군
-
연휴 끝이다 1
이제 빨간날이 아니야
-
키링 pdf 집앞 조선소 가서 뚝딱뚝딱 하는 양심없는 친구들이 있더라고 그렇게...
-
탈릅. 10
잘 지내.
-
나가야겟다 3
에휴다노
-
지금은 도둑고양이 삶이야 집고양이가 되고싶어
-
유튜브 5시간
-
이런 애들 보면 꼭 앉아서 멍때린 시간하고 중간에 물뜨러 가는 시간까지 재고있음
-
싯팔
-
6모미적+27점=수능 미적
-
입술에서피나 8
후우웅
-
우리들은 현실적인 문제가 닥치면 그 상황을 어떻게 해결해야 하는지에 대한 대책은...
-
아직 경력 없습니다.. 수학(확통) 영어 사문 일케 생각하고잇는데 각각 과목마다...
-
거지임뇨
-
ㅇ
-
ㅋㅋ병신들
-
디카프 어댑터 0
프로모터는 재탕이 많은걸로 알고있는데 어댑터도 작년 문제 재탕이 많나요? 전년도...
내년도 정치적 상황에 따라
(총선, 부동산PF, ...)
카와이한 악귀들이 대방출 될 수 있으니 ...
이젠 수능도 정치 눈치를 이렇게 심하게 봐야하는 상황까지 온게 끔찍하네요...