수2 자작 킬러 22번급 난도
이 문제 또한 겨울때 만든건데 잘만든 것같아서 올립니다!!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
소설 하나 써봄 5
옛날에 호랑이가 잇엇다 호랑이는 컸다 그래서 무서웠다
-
정신병자가연상이어야함 정상인은 연하인데 정병인이 평소엔 티 하나도 안내고 밝아보여서...
-
친구가 있다는사람들은 11
뭐 그냥 ㄱㅁ하고싶은거죠?? 그쵸??
-
수험생활 4
낭만잇고 재밋음. 조은 추억이 될 거 가틈
-
으응
-
먼가 많이 실망햇다 해야하나 처음엔 눈물콧물 질질짜면서 봣는데 이번엔 감동이 없엇어
-
수시러의 인생도 함 살아보고 시픔 근데 짜피 잘 못할 듯 ㅋ
-
ㆍ
-
ㅈㄱㄴ
-
일단 수도권 ㅈ반고에 다니고 있고 2학년 2학기까지의 성적 기준으로는 전교...
-
다들 잘자요 8
ㅂ.ㅂ
-
영타도 ㅇㅇ
-
설마 이시간까지 안자고 오르비하는사람 업겟지?
-
친구가 물어봤는데1.5가 6가 왜 저렇게 되는건지 아는사람2. CaCO3가 왜...
-
어문계열은 확실히 외대가 위죠..? 갈라치기 하려는게 아니라 이번에 외대 어문계열로...
-
중1 이후부터는 2
밤샌날이 안 샌날보다 많은거 가튼데
-
근데 안자면 멘헤라 올거같아서 무서워
-
공개적으로 실수를 저질렀으니 공개적으로 사과하겠습니다. 탈릅하셨어서 모를줄...
-
끝은 정신병자가 뒤지거나 정상인까지 정병에걸리는새드엔딩을좋아함
-
잠을 못자겠네 0
이러니 장투를 해야...
-
변한건 없니 5
날 웃게 했던 예전 그말투도 여전히 그대로니
-
취향 별거 없음 6
우는거 좋아함 치마 좋아함
-
약대 가능? 4
언매 미적 사문 세지 93 97 1 98 98
-
근황 ㅇㅈ 5
안녕하세요 누가 식물 사준다고 하면 따라가는 사람입니다
-
오해가 있었어요. 카톡으로 잘 해결하고 올게요. 저분이 오르비언 썸녀는 맞는대 일단...
-
다들 수고하셨습니다 10
。◕‿◕。
-
1타충임 8
사실 누굴 들어도 상관없을거 가타서 1타 들음
-
나랑 사귈래?가 어울리는 사람이 있고 너랑 사귀고 싶어가 어울리는사람도 있는듯 고백멘트에정답은없다
-
님들은 0
사람들끼리 밸런스 안 맞는거 가틈? 전 종합적으로 능력치 보면 꽤 맞는거 가튼데
-
여기서 첨 들어봄
-
나도 목표,꿈 정하고싶음 학교는 있어도 학과는 모르겠음 솔직히 하고싶은거 없음 그냥...
-
나 어릴때 0
전재산 투자해서 이상한 주식 산 직후에 뛰어내려서 몇년뒤에 깨어났더니 주식 떡상해...
-
스무살 되기 시름 10
안 되는 방법 공유 좀
-
열아홉인데 4
짝사랑해본 적 없음 어캄
-
주사안맞고 모든 병 치료하는방법 누가 개발해달라고 주사무섭다고요
-
롤이란 그런거지
-
2월 7일 딱 기다려
-
복습할 거임
-
알빠노 마인드긴 함
-
한의학효과좋은데 1
ㅇㅇ
-
역이 있다고는 안 함
-
ㅈㄱㄴ
-
미적 하셈 4
미적 좋음
-
ㅇㅇ
-
신경쪽 이상있어서 못걷거나 죽어가는걸 한의술로 치료하는거 보면서 세상은 참 넓구나 느낌
-
ㅇㄸ
-
ㅇㅇ
-
수학 선택과목 3
공통1틀 미적3틀입니다 미적 3문제는 확실히 몰라서 틀린거같은데 계속 미적하는게...
-
미국 지진 났고 엔디비아 이 두개가 문제네
56인가용
맛은 어땟나요?
개형파악이 좀 빡셌고 맛있게 잘먹었습니다!!
아 자야하는데 못참고 풀어버렸네
히히
빨리 푸느라 안되는 개형 엄밀히 안따지고 풀었는데 f'(a5)>0 조건이 없으면 개형이 여러개 나오나 보네요..!
이렇게 되기에 넣었습니다 히히
f'(a6)=0을 만족 안해서 어차피 탈락
역시 rivi님 ㄷㄷ
사실 f'(a6)>0으로 했다가 케이스가 너무 많아져서 안하게 되었네요 ㅋㅋㅋㅋ
f'(a6)=0 -> 교점 3 or 2
3경우 만족 x 2만족 f=t(x+1)(x-3)^3+7
t=7/27
문제가 참 맛있네요
이번수능 끝나고 문제나 같이 만드실래요?
어떻게품?
이거 맞는지모르겟는데
그래프안보여서 무지성수식넣엇는디
어떻게푸나요
아 아니네 내가쓴게틀렷네
아 합성함수 접근법 말씀하시는 건가요?
f(f(x))=f(x)에서 f(x)=t로 치환하면 f(t)=t가 되는데,이때 형태가 f(x)=x랑 같은 형태잖아요?
그래서 f(x)랑 x를 그려 판단하는 것입니다.이때 f(x)와 x가 만난다고 했을때 x축과 평행한 직선을 그어 실근을 파악합니다 왜 이렇게 파악하느냐면f(x)=t이기 때문입니다. (왜이렇게 되는지는 좀더 고민하시는 것이 공부에 도움될 것입니다.)
어쨋든 f(f(x))=f(x)의 형태는 y=x와 y=f(x)가 만나는 교점,그리고 그 만나는 점에 대해 x축과 평행한 직선을 그어 실근을 파악하는 식입니다
그 f7 이 7이 왜안되는거에요
방정식이기에 막 집어넣을수 없습니다 만약 모든 실수 이거나 구간별로 정의된 함수였다면 넣어서 파악하는게 가능합니다
f3=7 이니까 성립하려면 f7=7 도 되지않나요
모든 실수가 아닌 방정식이라서 f(3)=7이라고 해서 f(7)=7이 나타나는 것은 아닙니다 만약 모든 실수에서 f(f(x))=f(x)가 성립되었다면 f(7)=7이 맞습니다
아 이해됐어요 ㄱㅅ합니다
솔직히 이해못햇음 f7=7 맞는거아닌가
제생각엔 오류같음
옹 내일 한번 풀어보겠슴다
개형 못찾게쒀여,,포기
특수일때가 답입니다!!(1:3)
문제에 오류가 있는것같아요.. x=3 이 본 방정식의 해 라면 f(f(3))=f(3) 을 만족해야하므로 f(7)=7 입니다. 만약에 f식이 7/27(x+1)(x-3)^3 +7 이라면 f(7)=7 이 성립할수없으므로 모순, 즉 문제의 조건과 맞지 않습니다.
오류맞죠
네 오류임 헷갈리지마세요
본인의 방식으로 안풀린다고,그래서 문제오류라고 하는 것은 편협한 사고입니다
태리님이 말씀하신 것은 후건긍정의 오류입니다
따라서 제 문제엔 오류가 없습니다
네?? 도대체 어디서 오류라는거죠… 방정식의 실근이 주어지면 식에 대입하는건 당연한 행동인데 .. ㅋㅋ 당연한 상식을 눈가리고 아웅하지마세요
태리님이 말씀하시는 방식자체가 후건긍정의 오류라는 겁니다 네이버라든가 구글에, 후건 긍정의 오류를 검색해보시면 알겁니다
그리고 방정식의 실근이 f(7)=7이라고 언제 그랬나요? 제 눈이 문제있는 건가요? 전 서로 다른 실근중 7이 있다고 한 적 없습니다 문제 정확히 읽고 비판하시길
아니 방정식의 실근이 3이라고 했잖아요 지문에서. 어떤 방정식의 실근이 3이면 그 방정식에 x=3 을 대입했을때 성립한다. 라는 명제가 어떻게 참이 아닐수 있냐구요
다시 차분하게 문제를 한번 읽어보세요
제가 만든 문젠데 제가 모를리가요
f(3)=7이라고 했지 f(f(x))=f(x)라는 방정식에서 x=3을 대입하면 f(7)=7이 결과적으로 나타난다고 한적 전혀없습니다
이 방정식은 모든 실수에서 성립되는 것이 아닌 것이기 때문에 막 대입할 수 없습니다
f(3)=7 이고 x=3 이 저 방정식의 실근인 순간 f(f(3))= f(3) 인건 동의하시나요?
좀이따 쪽지로 하시는 건 어떤가요?
"방정식 f(f(x))=f(x)가 서로 다른 실근 7개를 갖는다. 이 7개의 실근을 순서대로 ... 라 할 때, A6=3이고, ...."
-> 방정식 f(f(x))=f(x) 의 실근 중 x=3이 있다.
-> f(f(3))=f(3) 이다.
에서 결과적으로 f(7)=7이 도출되므로 오류가 맞습니다.
별개로 문제는 잘 봤습니다!
동의합니다 a6=3이기에 오류가 되네요
감사합니다!!
의대가말하니까 바로 수긍하는거보소
윗분은 그렇게 말안했는데요 그리고 님도 a6=3이기에 f(7)=7이라고 생각하시고 지적하신건가요?
전 옳다면 받아들이는 편입니다. 의대라서가 아니구요. 미네님이 정확하게 말씀하여 오류를 지적해주셨으니까 제가 받아들인 것뿐입니다.