'모든'의 논리적 오류 | 6평 미적 28번
※ 6월 10일, 글 내용을 좀 더 상세하게 영상으로 풀어서 올렸습니다.
0
독해와 논리를 가르치는 이해황입니다.
이번 미적 28번 논란이 흥미로워서 짧게 글을 써봅니다.
1
실수 전체의 집합에서 연속인 함수 f(x)에 대하여
{f(x)}²+2f(x)+1이 x=1에 대칭이라면,
{f(x)}²+2f(x)+1 = {f(x)+1}²이므로
{f(x)+1}² = {f(2-x)+1}²이 성립합니다.
따라서 "모든 x에 대하여 f(x)=f(2-x) or f(2-x)=-2-f(x)"라고 할 수 있습니다.
그런데 이로부터 "모든 x에 대하여 f(x)=f(2-x) or 모든 x에 대하여 f(2-x)=-2-f(x)"라고 할 수는 없습니다.
2
"모든 사람은 남성이거나 여성이다."가 참일지라도
"모든 사람은 남성이거나 모든 사람은 여성이다."가 도출되지는 않습니다.
왜 그런지 바로 이해가 되는 분들도 있겠지만, 그렇지 못한 분들을 위하여
사람이 p, q 둘만 있는 가능세계1)를 살펴보겠습니다.
각주 1) 가능세계는 2019학년도 수능 국어영역에도 나왔고 PSAT/LEET에 모두 나온 적 있는 중요 논리학 개념입니다. 만약 이 개념을 잘 모른다면 가장 쉽게 이해하는 '가능세계' [두뇌보완계획100] 3분짜리 영상을 참고해주세요.
이때 가능한 세계는 아래 표와 같이 4가지입니다.
"모든 사람은 남성이거나 여성이다."는 w1, w2, w3, w4 모두에서 참입니다.
반면 "모든 사람은 남성이거나 모든 사람은 여성이다."은 w1(모든 사람이 남자)와 w4(모든 사람은 여자)일 때만 참이며 w2, w3일 때는 거짓입니다.
정리하자면, "모든 사람은 남성이거나 모든 사람은 여성이다."가 참이면
"모든 사람은 남성이거나 여성이다."는 참이지만, 그 역은 성립하지 않습니다.
3
논리학자들은 '모든'을 ∀으로, or(이거나)는 ∨으로 나타냅니다. ∀는 all을 뒤집은 것이고, ∨는 or를 뜻하는 라틴어 vel에서 가져온 것입니다. 참고로 and(이고)는 ∨를 뒤집은 ∧으로 나타냅니다.
지금까지의 논의를 기호를 활용하여 간결하게 나타내면 다음과 같습니다.
∀x(Ax∨Bx) ≢ ∀x(Ax)∨∀x(Bx)
구체적으로는 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx), ∀x(Ax∨Bx) ← ∀x(Ax)∨∀x(Bx)로 분리하여 생각할 수 있습니다.
4
2019학년도 LEET 추리논증에 이러한 변별을 묻는 문제가 나온 적 있습니다. 지금까지의 논의를 잘 따라왔다면, 아래 고난도 문제를 단박에 풀 수 있습니다. 핵심은 ㄷ입니다.
논리훈련이 되어 있지 않은 분들은 ㄷ을 적절하다고 판단합니다. 그런데 ∀x(Ax∨Bx) ↛ ∀x(Ax)∨∀x(Bx)이므로 ㄷ은 적절하지 않습니다. 즉, "모든 환자에게서 병원균 α와 β 중 적어도 하나가 검출된다"가 참이라고 해도, "모든 환자에게서 병원균 α가 검출되거나 모든 환자에게서 병원균 β가 검출된다"가 참이라고 할 수 없습니다. (참고로 정답은 ② ㄴ입니다.)
5
지적 호기심이 있는 분들을 위하여 양화사 분배에 대한 몇 가지 성질을 적어두겠습니다. 2에서 제가 표를 그린 것처럼 가능세계를 중복없이 누락없이 떠올려보면 충분히 혼자 이해할 수 있을 겁니다.
①∃x(Ax∨Bx)≡∃x(Ax)∨∃x(Bx)
②∀x(Ax∧Bx)≡∀x(Ax)∧∀x(Bx)
③∃x(Ax∧Bx)≢∃x(Ax)∧∃x(Bx)
④∀x(Ax∨Bx)≢∀x(Ax)∨∀x(Bx)
이때 ∃는 "어떤 ~가 있다"는 뜻으로, there exists에서 가져온 기호입니다.
참고한 자료
1. 2024대비 6월 모평 미적분 28번 대칭성 풀이의 논리적 오류에 대하여
2. 논리개념 매뉴얼5.0(이해황, 2023) (2의 설명은 이 책에서 가져옴)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
늦버기 12
오늘은 진짜 ㄹㅈㄷ 늦버기 으아악
-
학점? 요즘 좆도 안봄, 3.5만 넘으면 내가 실무에 맞는 얼만큼의 능력을 갖고...
-
온다는사람 어디감 끄투할사람:냉이채널 오르비 비번 2026
-
광명상가도 인서울 아닌가
-
편한거 제외하고요 경력이 쌓인다든지..
-
자주 돌아다녀야겟다
-
마지막까지 38번 두개 선지 헷갈려서 다른거 마킹 다하고 계속 고민하다가 안풀리면...
-
이시림논란있는분아닌가요?
-
Smash - Keria 봇듀오 파이팅!!
-
나를 마주쳐도 아는 척 하지 말아주세요... 부끄러워요 。◕‿◕。
-
거.짓.말.하.지.마
-
오버워치5시간
-
심심한 관계로 댓글 ㄱㄱ
-
더 무서운 사실 1
설날 연휴 기온 급강하 +폭설
-
나는 딱히 수 과학에 재능없다는걸 느껴서 그런듯.. 내가 잘하는건 수능수학 과학에서...
-
무서운 사실 4
방학 딱 절반 지남
-
시원하게 한번 ㅇㅈ하자
-
단 1개만 골라라 하면 뭐 고름?
-
교양을쌓아보자
-
인기 외모 말고 오로지 강의로만
-
도망가야겠다
-
나랑 세살밖에 차이 안나네
-
당분간 쉬어야지
-
점프 10
하는 사람 많음?
-
우리 부모님은 수지 부모님이 아니라서 괜찮음
-
샤브샤브 8
두가자
-
원래 이거였는데 이걸로 바뀜 추측하건대 KISSCHEMA 2016-2020 기출 저...
-
시립대에서 씨파따기vs반수해서 연고대가기 25수능은 14211이라 수학만 올려서...
-
전자공학과 가는데 노트북 뭐 사야할까요? 추천 좀 해주세요
-
치즈돈가스 떡볶이 라면은 절대 못끊겟음...
-
자해<- 이거 왜함 11
한다고 기분 안풀림. 몸에 상처와 흉만 남아서 보기 안좋음. 그리고 우리나라는...
-
흐으음
-
일단 의대의 경우 화1, 생1 추천 의대가 이제 생물1과 생물2 일부를 ㅈㄴ...
-
친구 자나보네 2
새벽 4시 반에 밖에서 스토리 올럇었노 ㅅㅂㅋㅋㅋㅋ 당연히 한 12시쯤에 올린 줄...
-
모니터 살려고 하는데 자금은 30~40까지 가능함 모니터 잘 아는 사람 있으면 추천좀해주고 가요~
-
공존 가능한거임?
-
법학전문대학원
-
골라봐요
-
만약 최초합 된 학교로 에타 가입했는데 추합되서 딴 학교로 옮기거나 할거면 걍...
-
안녕하세요, 연고대 3회합격자 연상논술입니다. 저소득층(기초생활수급자,...
-
그래도 ㅇ,ㄹ단 시발점부터 들어야지 수액 맞고 일어나니까 살만하ㄴㅔ
-
신공학관 완성되면 ㄹㅇ 건물 내부는 고대 문과캠보다 웅장한것 같음
-
여러분들이 아마 살번서 한 번쯤은 코드(Chord)에 대해 들어보셨을 겁니다....
-
?
-
안녕하세요, 연고대 3회합격자 연상논술입니다. 자기소개 시작하겠습니다. - 강사...
-
솔직히 다른애들은 모르겠는데 얘는 컴퓨터 엎고 나가도 인정함
-
도표 문제의 난이도가 과탐 문제에 어느정도 수준인가요? 어느정도인지 사람들 글로만...
-
해설지 보면 정작 내가 제대로하고있는게맞는지. . . 의문이 들고 안보면 시간이...
수학까지 잘하시는 국어 강사님...ㄷ
해설강의 찍고 편집할 때면 이 세상 다른 모든 것들이 흥미로워져서 큰일이에요 ㅎㅎ
제가 공부할때와 같은 모습이시군요..
x가 하기 싫을 때는
x보다 더 하기 싫은 것을 찾으면 좋더라고요. ㅋ
오 ㅋㅋ 써먹어 보겠습니다
그저 GOAT...
고맙습니다. :)
와 설명 진짜 잘하시네요. 이해가 쉽게 되네요
고맙습니다. PSAT/LEET 수험생들에게 하도 질문을 많이 받다보니, 자연스럽게 설명이 진화(?)했습니다. ㅋ
비트겐슈타인의 논리철학논고를 통해서 1차 술어논리에 대해 혼자 공부할 때가 떠오르는 글이네요. 잘 읽고 갑니당
재미있게 읽어주셔서 고맙습니다. :)
논고를 통해서 1차술어논리요?
대단하시네…
어찌보면 당연히 여자와 남자가 동시에 존재할수있다는 생각이 드는데 이걸 수학으로 !
집합과 명제를 좀 현란하게 확장해서 수능/PSAT/LEET를 가르치고 있습니다. ㅋ
쉽게 말하면 모든 사람이 남자이거나 여자일수 있다에서 "모든 사람은 남자" or "모든 사람은 여자"가 도출되진 않는다
네, 그리고 "한 명 뽑아봤더니 남자라고, '모든 사람은 남자'라고 단정해서도 안 된다. " 정도를 추가할 수 있습니다.
요새 수학강사는 국어도 잘하네
오르비 신규 수학 강사 이해황입니다. 잘 부탁드립니다.
10대 때 로즈마리 수열을 투고한 적 있습니다.
https://oeis.org/A026644/a026644.html