작수 22번 적중?
2021년 여름에 만들었던 문항인데
이제 보니 평균변화율 자체를 하나의 함수로 바라본다는 아이디어가 동일하네요 ㅋㅋㅋ
뭐 이거 갖고 적중이라 할 수 없는 건 저도 잘 압니다~~
진짜 적중은 2017학년도 수능 가형 30번이죠 ㅋㅋ
(가) 조건으로부터 함수 f(x)를 함수 g(x)에 관한 평균변화율로 해석할 수 있음을 알 수 있죠
처음 저 문항 공부할 때는 g(x)가 사차함수길래 '어 f(x)는 삼차함수겠네' 생각하고 풀었다가 안 풀렸었는데.. 그때는 미적분에서 다루는 초월함수들에도 익숙하지 않아서 아직 모든 함수를 다항함수 위주로 생각했던 것 같네요
이렇게 보니 저도 참 먼 길을 거쳐 몇 몇 분들께 인정받는 수능 수학 실력을 갖고 이렇게 글 쓰고 있는 것 같습니다. 아까 집에 쌓여있던 수능 자료들을 버리고 왔는데 13권 가까이 되는 노브랜드 두꺼운 스프링 무지 노트들에 써있는 수식들과 '정적분으로 정의된 함수를 만나면 대입하고 미분하자'와 같은 문장들을 보니 내 생각보다 내가 정말 고생해서 대학에 왔구나 싶더라구요.
저는 주로 공부할 때 양(quantity)과 질(quality)에 관한 이야기가 나오면 항상 quality에 초점을 두고 이야기를 했었는데 돌이켜보니 저도 적지 않은 quantity와 함께 했기에 질적인 측면에 초점을 맞추고 학습할 수 있었나 싶기도 합니다~
+ 참고로 [Essential Calculus Early Transcendentals: Metric Version 2nd edition International Edition by James Stewart] 공부하다 보면 CHAPTER 4 APPLICATIONS OF DIFFERENTIATION 공부하는 214페이지 EXAMPLE 5 가 [2023학년도 6월 8번]과 거의 일치함을 알 수 있습니다.
또한 f'(c)=(평균변화율) 꼴로 평균값 정리를 가르치는 한국 교과서와 달리 f(b)-f(a)=(b-a)f'(c) 꼴도 평균값 정리를 소개할 때 직접 적어둔 것을 책에서 확인할 수 있는데 이 표현은 b=x, a=1, c=g(x)라 할 때 f(x)=f(1)+(x-1)f'(g(x))를 의미하여 [2023학년도 수능 22번] (가) 조건과도 같음을 확인할 수 있습니다.
이처럼 대학 미적분학을 공부할 때 직접적으로 확인할 수 있는 아이디어들, 고등학교 미적분을 공부할 때는 간접적으로 확인할 수 있던 아이디어들이 평가원 문항에 들어가있는 점을 공부할 때 수능을 준비하는 고등학생 분들도 조금 더 본질적인 접근을 하는 것이 학습에 도움이 될 것이라는 생각이 드네요!
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
아니뭐가문젠데
-
분명 마취해도 그 ㅈㄴ 시리고 지지는듯한 느낌은 너무 고통스러움. . .
-
춥다 1
겨울인가
-
심찬우 교재 1
예비 고3인데 심찬우 선생님 교재 언제 새로 나오나요?
-
교대 등급 2
진짜 망해도 몇 등급 정도 나와야 갈 수 있나요??
-
나트륨에 몸이 절여지는
-
가게주인이 물건사간 구매자가 미성년자인거 알게돼서 철회권행사하려했는데 미성년자...
-
내일은 또 모르잖아요
-
1시다 자라 4
-
1.답 비교단 2.마음은 이미 서울대 3. 예상학교 알려주ㅅㅔ요ㅠ 4.재수학원 ㅊㅊ...
-
생명 비유전 남은기간동안 확실하게 잡을 수 있을까여?? 4
그냥 공부하다보니까 유전이 너무 재밋어서 유전만 하다보니까 유전은 다맞고 비유전에서...
-
아니면 좀 걷고 앉나요 걸으면 몇십분 정도 겇으시나요 저는 밥먹고 산책하고 세시간...
-
햇반 하나 깔까 2
남은 밥이랑 먹었는데 찌개가 애매하게 남았네
-
텐더 1
오마베이베
-
이감 등급컷 1
이감 등급컷은 수능 예상컷인거나 마찬가지에여? 왜 등급컷이 모든 회차가...
-
못해도 99..?
-
이번 겨울도 로맨틱하지 않을 예정 ㅋㅋㅋㅋ
-
수능 긴장 꿀팁 6
시험 때 최고점수 찍을 생각말고 못했던 점수보다만 잘봐야지하고 푸셈 내 실력은...
-
겨울이 여름보다 좋다고 하는건 수족냉증이나 비염 등이 없는 축복받은 사람들의 배부른 소리일뿐...
-
무한도전 멤버 ai커버 영상 보고 알게됐는데 와 개좋네요.. 쌀쌀햐져서 그런지...
-
ebs국어모고 0
뒤로 넘겨야하는거 개빡치네 종이 들었다 놨다
-
기균 질문있는데 1
한부모증명서 나오기만 하면 기균 무조건 되는거임?
-
미적이요,,,제발 ㅠ...ㅠ ....
-
명곡추 1
틀딱 아님
-
일단 92 (시간 풀로 채움, -15, 30) 이고 문제 좋네요. 개인적으로...
-
집에 찔끔 남은 김치찌개 데웠음
-
학교영어시간에 선생님 따라 밑줄긋기 빈칸채우기만 40분 동안 하는데 개쓸모 없다고...
-
쥐나버림
-
레어 구매 확인 3
과연
-
(20a+4)3/10 = 2 (40a+4)3/10 = 3 식 이렇개 두 개가...
-
수능 끝나고 정정 문의해야겠다...
-
아 기구하다 9
기구하군아
-
상상 국어 2
상상 파이널 패키지 좋은 회차 추천해주세요
-
머리 구조가 어떻게 된거야 국어 영어는 잘되는데 수학은개못함
-
ㅇㅈ 잘못해서 3
하 저 ㅇㅈ 잘못해서 구글에 박제된거가튼데 이왕 이렇게 된거 한번더?
-
못참지
-
동네 재종 최상위반이었는데 12시에 튀고 10시까지 피방에서 롤한 애는 중앙대 공대...
-
귀찮아서 1월 1일로 생년월일 등록했는데
-
야 슬슬 욕심이 많다?
-
?
-
분명 엊그제가 여름인것 같었는데...
-
점수는 안나오고 목표는 높고 불안하니 공부는 안되고… 또 늦게 자고… 내일 또...
-
팡 작년 공연 티저영상
-
그걸로 나는 충분해요 불렀는데 너무 좋음 ㄹㅇ
-
꼴값인가 7도가 어떤 느낌이더라
-
찍특 5
3만원 주고 샀는데 개현타온다… 이게 과연 맞을지도 모르는거고 진짜 3만원 값어치를...
-
ㅇㅇ
-
고2 정시러 이성적이면 열심히해서 어디까지 가나요? 7
제일 잘본 모고 고1때 21111 근데 고2 10모 33212 . . . 작년 수능국어는 5등급
-
전남친이 있는 것 같다
-
전여친이 있는거같다
정말 존경해요..!
존경까지야..! 감사합니다
함수 [f(1+x)-f(1)]/x의 식을 직접 작성한 후 방정식 (도함수)=2 을 풀어 구한 x값 갖고 직선의 방정식 두 개 찾아주면 되죠 ㅎㅎ
만약 '평균변화율로 정의된 함수'를 이 문항 갖고 2016년에 학습했다면 1711가30과 231122 모두 편하게 풀어낼 수 있지 않았을까 싶네요, 풀어주셔서 감사합니다!
p.s. 앞으로 이런 상황을 '정적분으로 정의된 함수' 부르듯 '평균변화율로 정의된 함수'라고 불러야겠다는 생각이 들었습니다! 기존에 1711가30 해설할 때 본문처럼 바라보는 것을 '기울기 함수'라고 어떤 분이 명명해두었던 것으로 알고 있는데 제겐 '평균변화율로 정의된 함수'라는 표현이 더 와닿네요
수능 2목표면 기출 무한반복 ㄱㄱ.?
1받고싶은데 수능장가면 쉬운문젠데 꼭 갑자기 안보이는 문제가 있어서 1은 자신없뚬ㅠ 도형 너무 무섭구요ㅜ
일단 안정적인 1, 2등급이 나오려면 전형적인 문항들과 기본적인 문항들에 익숙해질 필요가 있는데 (쎈, 마플 교과서, 마플 수능기출총정리) 정도에 있는 문제들 본인이 느끼기에 너무 어려운 거 빼고 3회독 정도 제대로 하시면 충분할 것이라 생각합니다.
사실 평가원 기출 문항 분석은 웬만큼 실력이 쌓여야 더 효율적인 공부 방식이라 생각해서 우선은 많은 문제를 막 풀어보심이 어떨까 싶어요.
17년도 문제는 저도 처음에 막 풀다가 안풀려서 의아했었어요 ㅋㅋ
처음 보고 양변 x-a로 나눌 생각이나 식 계산으로 접근할 생각은... 저였다면 못했을 것 같아요 당시 현장에서 저 문항을 마주한 분들은 어떤 생각으로 푸셨을지