오늘 3모 11번 도형 문제에서
저기로 수선의 발 떨구는게
필연이라고 봐야하나…
아님 발상이라고 봐야하나…
일단 60도랑 더하기꼴로 주어진건
굉장히 저 수선의 발을 어필하고 있는듯한데….
나는 풀면서 이 풀이는 좀 발상인가..? 싶었는데
님들 어케 풀었는지랑 의견이 궁금해요
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
보닌집 설날특 0
아빠차로 편도 4~5시간 이상 걸리는 거리라 일단 연휴 시작때 내려가서 친척들...
-
맞팔구 5
-
넌 나를 위한 공주지
-
맛아 0
8천원순대국밥
-
오늘 여사친들이랑 술마시는데 옷 뭘입고가야할까 추천좀.. 7
LOOK 2개인데 한번만 골라줘요.... 키 185/ 몸무게 80 입니다.....
-
칫솔 치약
-
양 응디 0
-
화작하면 1등급은 힘들거같아서 그시간에 사탐 수학 최대한 끌어올리는 전략으로...
-
지금 괜찮아 문장편 듣고있는데 다 듣고 또선생으로 넘어가도 괜찮을까요? 그리고...
-
수능국어1등급 1
예비고2 입니다 2023학년도 수능풀어봤는데(시간은 안잼.. 대충 1시간 반 정도...
-
휴학까지 하면 로딩기간이 말이 안됨..안 그래도 늙었는데
-
성대 자연계열 붙었고 서강대 생명과학과 기다리고 있어요. 공대 갈 생각은 없고...
-
영조 13년(1737)에는 이현필이 영조의 잘못 26가지를 공격했다가 귀양을 가기도...
-
영어만큼은 원툴로 잘하는데...
-
이게 무슨뜻일까여?
-
더블카운팅 30번에 박고 교란순열 29번에 박기 +기하는 공간기하 1개 더
-
롯데월드 11
자이로드롭 왜 운행함?.?
-
집 바로앞에 있는데는 잼민이들 너무 많고 시설도 좀 구려서 가기 싫음... 5분...
-
매월승리 0
매월승리 시즌 1까지는 기출이던데 그냥 마더텅 풀고 시즌 2 부터 하는거 어떰요
-
자꾸 드는데 환불할까 흠.. 언매 공부할 시간에 사탐 등급 하나라도 더 올리는게...
-
사유: 기어를 3단으로 해놓고 운행해서 엔진정지 4번 연속으로 일어남 시뮬레이션이...
-
카톡 운영정책이 너무 싫어서 카톡 탈퇴해버림.. 카톡계정자체가 없음 메세지로도...
-
내 오랜 꿈이다... 어쩌다가 이렇게 됐는지
-
3박4일이라는데 이게 맞나요... 부모님도 이거땜에 싸우던데 하...
-
사라질 직종이 어떤 것일까는 정확히 예측 불가능한거임?
-
복지부 교육부 멍청한놈들 때문에 이게 뭔 혼란이람
-
다이어트중이라 밥 남김 이게 남긴거냐는 말은 ㄴㄴㄴㄴ
-
ㅇㅂㄱ 0
으아아
-
표지의 상징은 희망입니다. ㅎㅎ 실제책 내지는 맛보기와 달리 표지와 비슷한 색으로...
-
얘들아 @@이 야한게임한대~
-
에 대해서 1년전쯤 학부생수준에서 자필로 규명해놓았던 자료를 공유합니다 ㅇㅇ...
-
성대가 조발이 가능한 이유와 다른 학교가 못하는 이유 0
보통 조기발표 하는 학교는 정시에서 특별전형(농어촌, 기회균등, 외국인, 장애인...
-
아가기상 9
우웅
-
세계관 재정립 4
공허참에 의하면 전건이 거짓이면 명제가 참이다 p->q 에서 p가 거짓이면...
-
피램 화작 보는데 글씨가 많이 작긴하네 그냥 뽑아서 풀어야하나
-
자이 고난도나 마더텅 고난도, 이투스 15분 킬러 다 풀어봤는데 좀 쉽더라구요 현재...
-
전 한끼정도만 집에있는거 먹고 다른건 나가서먹거나 배달인듯..
-
지방교대에용 점공률 42즈음이고 작년에 예비 50까진가 돈거같은데
-
두 줄이네요 9
독감이
-
외로움 이런거 말고 학점에서 불리함 등등
-
‘시험 난이도 함부로 예단하기’ 이거같음 내가 그러다가 망했거든..
-
혹시 695.49 점공 몇등인지 봐주실 분 계신가요? 만덕 사례해드려요
-
입결은 연>>>경희지만 사회나가면 어디가 더 유리할까요..? 취업 잘되는건...
-
여캐일러 투척 4
화2 정복 3일차
-
교재 퀄리티가 개지림요. 종이질이 걍 넘사고 360도로 펴지는거 필기할때 개편해요....
-
많이 별로임? 법무사+세무사 둘 다 있으면?
-
어르신 조은 하루 보내세연
안내려도 풀려서
근데 발상은 아닌듯
근데 저 수선의 발을 마땅히 내려야 한다! 까지의 당위성은 솔직히 60도 특수각 아니면 잘 못느끼겠었어요
혹시 님은 수선의 발 안내리고 푸셨나요??
처음 봤을때 너무나도
당연히 수선으로 풀었고
두번째는 ac pc구해서 풀었어요
아하 감사합니당
60도라는 특수각을 사용할 수 있는 직각삼각형을 만들어야겠다고 생각하는건 크게 무리는 아니기 때문에 발상적이진 않은듯
감사합니다
다들 그렇게 생각하시네요
걍 적당하게 풀었나보네요
전안내리긴했는데너무노골적이어서발상까진아닌듯
혹시 어떻게 푸셨나요..?
선생님 풀이 보고 처음에는 발상적이라 느꼈는데 결국 AC의 길이가 sqrt2+sqrt6으로 주어지기에 수선의 발을 H이라 할 때 삼각형 ABH에서 AH의 길이가 sqrt2임을 활용해 CH의 길이가 sqrt6임을 결정할 수 있으니 필연적이라 볼 수 있지 않나 생각합니다.
저는 필연이라는 것도 결국 '내 입장에서 자연스러운' 풀이를 볼 때 쓰는 표현이기에 선생님이 '60도랑 더하기 꼴로 주어진 건 굉장히 저 수선의 발을 어필하고 있'다고 느끼셨다면 필연으로 보는 것이 맞지 않나 생각합니다.
자세한 코멘트 감사합니다
아무래도 딱 한풀이에만 적용되는 풀이는 제 스스로가 지양해서 그런지 조금 의구심이 들었는데 덕분에 해소가 되었습니다
참고로 저는 이렇게 풀었습니다.
1. 삼각형 ABC에서 각 A를 중심으로 cos법칙 돌리면 AC의 길이 알 수 있음
2. 삼각형 PBC에서 sin법칙 돌리면 CP의 길이를 알 수 있음
3. 삼각형 ABC에서 각 C를 중심으로 cos법칙 돌리면 각 C의 크기가 45도임을 알 수 있고 그에 따라 각 ACP의 크기가 30도임을 알 수 있음
4. 삼각형 ACP에서 sin(각 ACP) 값 활용해 넓이 구할 수 있음
아 저랑 3번만 달랐네요
자세한 설명 감사합니다!
전 길이 구한다음 넓이니까 각이필여한데?
그리고 15도 있길래 혹시?하면서 전체삼각형 사인법칙 쓰니까 45도 나와서 그렇게 바로 계산했어요
15도로 힌트를 눈치챈 당신은 센스쟁이
AB 길이 알고 BC 길이 아는데 각 ABC가 75도길래 그냥 cos75 이용해서 했어용
코사인75도를 외우세요..?
이거 중학도형 모르면 절대 못품? ㅠㅠ
전 그냥 바로 사인법칙씀 바로 45도 나오길래 1분컷 냈음
저는 덧셈정리..