2022학년도 고3 10월 미적분 30번 해설
그냥 여담으로 드리는 말씀이지만 평가원 모의고사와 교육청 모의고사는 년도를 세는 기준이 다릅니다.
평가원 모의고사/수능은 대학수학능력을 측정하고자 하는 시험으로, 시험을 치는 년도의 다음 해에 대학에 입학할 학생들을 응시 대상으로 하기에 시행 년도에 1년을 더한 햇수를 표기합니다. 예를 들어 2022년에 시행된 6월/9월/수능은 2023년에 대학에 입학할 학생들의 대학수학능력을 측정하는 시험이기에 2023학년도 6모/9모/수능 이렇게 표기합니다.
이와는 대조적으로 교육청이 주관하는 모의고사 시험들의 경우 정식 명칭이 전국연합학력평가인데, 전국연합학력평가는 '그 해의' 전국의 학생들의 수준을 가늠하기 위한 시험이기에 시행 년도를 그대로 표기합니다. 즉 제가 오늘 올릴 문제는 2022년 10월에 시행된 학력평가 미적분 30번 문제인 것입니다.
다들 알고 계시리라 생각합디다만 의외로 헷갈리기 쉬운 사항이기에 이러한 서론을 적어보았습니다.
---------‐-----------------------------------------------‐-----------------------------------------------‐-----------------------------------------------‐-------------------------------------
30번 문제입니다. 가형 30번과 요즘 미적분 30번을 비교해보면, 상대적으로 문제의 호흡이 상당히 짧아진 대신 핵심적인 요소들을 정확히 파악해야 한다는 점은 비슷합니다.
우선 문제를 읽어보면, (가) 조건을 해석하는 것이 관건으로 보입니다. 간혹 가다가 적분식을 미분할 생각을 하지 못하고 문제를 결국 풀지 못하는 경우가 종종 있는데, 적분식을 포함한 관계식이 주어져 있다면 우선 미분을 해보는 것 역시 굉장히 중요합니다. 이렇게 적분식이 주어져 있을 때 미분을 통해 상황을 파악하는 문제들이 유독 올해 교육청 시험에 많은 편이었습니다. (3월 22번, 4월 22번) 아무튼, 양변을 x에 대해 미분하면...
이러한 관계식이 나옵니다. (G(x)는 g(x)의 부정적분입니다.) 여기서 양변을 미분하였을 때 오른쪽 항이 -g(3a-x)이 되지 않는 이유는 합성함수의 미분에 의해 속미분을 했을 때 -1이 곱해지기 때문입니다.
관계식을 잘 살펴보면, g(x)가 x=3a에 대해 선대칭이라는 것을 알 수 있습니다. ln(x)는 증가와 감소가 변하지 않는 일대일대응 함수이므로 f(x)+f'(x)+1이 x=3a에 대해 선대칭인 이차함수라는 것을 알 수 있겠군요. 편의상 f(x)+f'(x)=h(x)라 하면 g(x)는 항상 0보다 큰 값만을 가지므로 h(x)+1은 항상 1 이상, 즉 h(x)는 항상 0보다 큰 이차함수라는 결론을 내릴 수 있습니다.
따라서 h(x)의 대칭축이 x=3a임을 파악하면 이와 같이 h(x)의 식을 세울 수 있습니다. 하지만 아직은 정보가 너무 부족합니다. '상수' a의 값이 구해져야 문제를 풀 수 있을 거 같은데 아직 a의 값을 구할 수 있는 관계식을 찾지는 못했습니다. 어떻게든 a의 값을 구해봐야 할 거 같은데, g(x)를 가지고 할 수 있는 이야기는 이 정도가 끝으로 보입니다.
여기서 한 가지 말씀드리자면, 적분식을 보았을 때 우리가 할 수 있는 행동은 크게 2가지입니다.
1) 미분한 뒤 도함수의 정보를 파악한다.
2) 적분식에 적당한 수를 대입하여 값을 추려낸다.
1번의 경우에는 수2와 미적분 모두에서 공통적으로 요구되는 사항이지만, 2번의 경우에는 과거 일부 가형 킬러 문제에서 요구되었던 발상입니다. 왜냐하면 수2에서는 합성함수의 미분법을 배우지 않기에 적분구간에 x의 계수가 1인 일차식만을 넣을 수 있어 대입과 관련된 이야기를 하기가 상대적으로 어렵기 때문입니다. 방금 적분식을 미분하여 g(x)에 대한 정보를 파악했으니 이제 적분식에 적당한 수를 대입할 차례입니다.
'모든 실수 x에 대해' 두 적분식의 값이 같다고 하였으므로 이는 x에 대한 항등식입니다. 무엇을 대입하여야 할까 좀 생각해보니, g(x)가 항상 0보다 크다는 점에서 착안하여 위끝을 동일하게 설정해준다면 아래끝의 값이 서로 같을 것이고, 아래끝을 동일하게 설정해준다면 위끝이 서로 같을 것이니 이를 통해 a를 구하면 되겠군요. 저는 편의상 아래끝을 동일하게 2a로 맞춰주겠습니다. 물론 위끝을 동일하게 2a+2로 맞추셔도 a값에는 변화가 없으니 참고 바랍니다.
그러면 앞서 언급한 h(x)의 식은 h(x)=(x-3)²+k가 되겠군요. (나)에서 g(4)=ln5라 하였으니 h(4)+1=5가 되므로 h(4)=4가 되겠군요. 그려면 k=3이 나오네요. 이제 끝났습니다. 답을 슬슬 낼 시간입니다. f'(x)를 구해야 하므로 구해보면...
f'(x)는 이와 같습니다. 이제 진짜 답을 내봅시다.
따라서 m=-4, n=16이 되어 m+n=12임을 알 수 있습니다. (EBSi 기준 정답률 8.2%)
개인적으로는 이 문제가 정적분의 주요한 성질들을 굉장히 잘 묻고 있다고 생각합니다. (특히 g(x)>0임을 이용하여 a를 구하는 부분) 다만 당시 10월 22번은 정답률이 약 3.9% 정도로 잡히는데, 굉장히 전형적이었던 다항함수 킬러 문항이었어서 오히려 이 30번이 더 어려웠다 생각했으나 정답률이 이쪽이 2배 이상 높게 나온 것을 보고 조금 신기했던 경험이 있습니다. 아무튼 해설은 이쯤에서 마치겠습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
김과외 구경하고 있는데 어떤분 요청사항에 '잘하는ㄴ 구함' 이라고 되어있던데......
-
공통선택틀 질문 0
기하 공통4틀(-16) 선택 3틀(-11)인데 이런경우에도 동일 점수내에서도 유불리가 있을까요?
-
올해 유독 미적 의견이 안 맞는 거 같은데
-
이원준t의 고능아식 사고(인지과학, 논리학 기반)를 체화한 뒤 좀 더 쉽고 설명이...
-
멘탈 나가있음
-
아.
-
물2 자작 (26-Long time no see, huh?) 1
-Hey.. Can't you smell that? -What? -That...
-
사생활 필름 끼고ㅋㅋ
-
진짜 한 손으로 세졌는데 근 몇년사이에 엄청 많아졌네.. 뭐 그냥 지인이니까 내...
-
믿습니다 0
(출처 -히든카이스 인스타) 기하 73점 3등급
-
ㅈㄱㄴ
-
미적 1컷 88이라고 가정했을 때 난이도 차이가 이렇게 심한데 8점차도 안나면 좀...
-
25 의대 모집정지/입학취소가 현실적으로 가능한거임? 0
수시도 이제 거의 끝나갈거고 정시나 수시가 각각의 영역에서 하는게 아니라 복합적인걸...
-
수능 기출의 미래 같은 ebs 교재 pdf 어디서 구할 수 있음?
-
지금 확통 2컷이 88일수도 있다길래.. 그럼 이 점수는 꼼짝없이 백분위...
-
현장에서 풀면서 9모급 난이도 느낌들길래 하나라도 틀리면 ㅈ 된다 생각들더라 집에...
-
누구 한테는 서울대,한의대가 원하는 대학일수도 있지만 7
누구는 더 높은곳을 노릴려고 반수 하는 대학
-
김영일 농어촌 0
농어촌 지원이 되는데 김영일 얘네 표본+합격예측 믿을만 한가요?
-
한국에도 출시해다오
-
확통 1컷 96 0
가능함? 무섭네 진짜 시발 아 ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
-
미적 1컷이 92라고 하신 내용 자체는 없고 내가 본 건 88점이 누백 6% 정도...
-
지리독학 0
쌍지독학가능함? 강의 따로 안듣고 걍 수특으로 개념정리하면서 공부할 생각인데 가능?
-
알려주세요!!
-
번따해본사람 23
어케해야대 타이밍 카페옆에 이쁜분이잇어 어떻게하면 번호를 뭐라고 말하고 물어봐야되지?
-
밸런스게임 1
반응속도 10ms로 살기 vs 시력 3.0으로 살기
-
제가 타지역 지방에서 대학생활 할거같은데 긱사비 제외 식비 포함60이면...
-
개념의신은 이투스 월간 구독권 있어서 생선님 강의 들을수있음 28 or 29 수능...
-
오르비에 수시러 많지 않아서 공감하려는진 모르겠는데 특히 2등급대 계집애들이 더...
-
학점황님들 공부법좀 알려줘요잉
-
힠힠힠힠힠힠힠힠 3
힠하 히카!
-
안전지향 어떤데
-
칸타타님 표 보니까 진짜 확통은 23처럼 난도 올리든지 해야할듯
-
후배들 빨리 보고싶다
-
올해 더프 후기 14
작년에는 월례 보다가 올해는 더프를 보니 처음에는 잘 적응이 안 되었었어요...
-
레전드기만 5
-
호에에 무서운것임뇨
-
출처 : 인스타그램 @hiddenkice 1컷 96 2컷 88 3컷 76
-
1호선.. 1
혹시 내일 1호선 파업하나요..? 외대 논술가야되는데 택시타면 늦을거 같은데ㅠㅠ
-
ㅈㄱㄴ +기숙에 스맛폰 가져가도 되나요?아니면 아예 안가져가는게 낫나요?
-
이 정도면 성적 많이 오른 건가요?? + 삼반수 도전 질문 2
현역 서경대 경영 추합 > 재수 가채점 결과 국민대, 세종대 안정~적정 솔직히 6평...
-
연장해서 아직 기한까지 남았는데 며칠 전부터 이렇게 뜨더니 누르면 계속 이래요 잠깐...
-
조교 0
현강 조교 같은 거 해보고 싶은데 이번에 선생남 수업 안 들었으면 지원 못하나요?
-
초중등 영어과외 얼마가 적당할까요?? 각각 2만원, 2만3천원 어떰 0
본인 학교는 지방 의치한 인구 십만 이하 시골에서 과외 (교육열 낮고, 과외선생...
-
저 지금 할게 ㅈ도없어
-
문과 어디까지 가능
-
근황 / 무물 9
칰붕이 HLE Zeus란 소식에 며칠 째 사경을 헤매는 중입니다.. 천둥의 신………...
-
이 정도면 과기대 세종대 국민대 라인 공대는 가능하겠죠?? (메가랑 진학사에...
-
근데 왤케 어려움요 내가부른거 다시들으니까 좀부끄러움 가수들은 진짜 대단한...
-
아마두 듣는데 진짜 21
초딩때가 생각난다 돌아가고 싶은 마음
-
시립대식 918이던데
동의합니다. 저도 현장에서 풀었을 때는 이게 22번보다 어렵다고 느껴졌던 거 같습니다. 그런데 막상 수능 끝나고 심심할 때 하나씩 풀어보니 쉽게 풀리는 문제들이 종종 있는 것도 같습니다ㅋㅋㅋ
저는 다음과 같이 풀었는데 주니매스 님 풀이를 보니 잘 푼 것 같아 다행이네요! 글 감사히 읽었습니다
(가) g(x)>0 <=> f(x)+f'(x)+1>1 <=> f(x)+f'(x)>0
적분식의 양변을 미분하면 g(3a+x)=g(3a-x)
<=> g(x)는 x=3a 대칭
<=> f(x)+f'(x)+1은 x=3a 대칭
(g(x)에서 f(x)+f'(x)+1이 합성된 ln(x)가 증가만 하거나 감소만 하는 함수이기 때문)
적분식 integrate g(t) dt from 2a to 3a+x = integrate g(t) dt from 3a-x to 2a+2 를 integrate g(t) dt from 2a to 3a + integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a + integrate g(t) dt from 3a to 2a+2로 바꾸면 앞서 g(x)가 x=3a 대칭임을 알았기 때문에 integrate g(t) dt from 3a to 3a+x = integrate g(t) dt from 3a-x to 3a 임을 알기 때문에 남은 식 integrate g(t) dt from 2a to 3a = integrate g(t) dt from 3a to 2a+2 에서 2a+2=2a or 2a+2=4a로부터 a=1 결정 (a=/0를 가정하고 풀었는데 a=0이라면 모순 발생)
(나) g(4)=ln5 <=> f(4)+f'(4)=4
얻은 조건들로부터 f(x)+f'(x)=(x-3)^2+3이고 f(x)=x^2-6x+12임을 알 수 있고 마지막 적분 식은 치환적분법에 의해
integrate ln(x^2-6x+13)*(2x-6) dx from 3 to 5 = integrate ln(t) dt from 4 to 8 이므로 적분값은 16ln2-4, 답은 12
감사합니다. 요즘 미적 30번은 여전히 식이 가진 의미를 파악하는 것이 중요하긴 하지만 그래도 과거에 비하면 계산량은 좀 줄어든 느낌이 드네용
동의합니다, '식이 가진 의미를 파악하는 것이 중요'하다는 말에서 2021학년도 고3 10월 미적분 29번도 떠오르네요! 그 삼각함수에 대해서 정적분 조건 제시했던 (제 기억이 맞다면)