12번에 대한 개인적인 생각
수능은 잘 모르지만 문제 오류 논란이 생긴 것 같아 짧게 써봅니다.
우선 수능 수학(고등학교 수학)과 대학 수학의 차이점을 알아야 합니다. 12번 문제는 확실히 발문이 불명확하고 대학 수학의 관점에서는 오류라고 판단할 여지가 있으나, 추론 능력과 문제 해석 능력도 중요시되는 수능이기 때문에 "모든 n으로 해석해야 풀리도록 설계했다" 라고 변명하면 더 공격할 수가 없습니다. 순수 수학의 관점에서는 오류라고 생각을 하고, 충분히 이의를 제기할 수 있지만 평가원이기 때문에 전원 정답 처리될 가능성은 낮습니다.
사실, 순수 수학의 관점에서는 수능 수학의 출제 범위가 되는 고등학교 교과서의 많은 부분이 오류입니다. 극한의 정의도 오류라고 생각할 수 있을 만큼 추상적인 자연어로 해놓았고, 요즘은 수정되었는지 모르겠지만 연속함수의 정의도 잘못되었습니다. 미적분학에서 가장 중요한 미적분학 기본 정리(FTC)를 마치 자명한 성질인 것처럼 그림 하나 띡 그려놓고 넘어가는 만행을 저지르기도 했으며, 수열의 정의도 일반적인 정의와 다릅니다. (교과서에서는 초항을 a_{1}로 정의하지만 실제로는 n >= n_{0}인 모든 자연수 n에 대하여 a_{n}의 값이 정의되도록 하는 최소의 정수 n_{0}에 대하여 a_{n_{0}}를 초항으로 설정하고 그렇기 때문에 a_{-13}과 같은 표기도 가능합니다.)
어쨌든, 수능 수학은 학문으로써의 수학과 차이가 있기 때문에 이를 무턱대고 학문의 관점에서만 접근하려 하면 문제가 생길 수 있습니다.
또한 n을 모든 자연수로 해석하는 근거를 이전 기출문제에서 찾아오시는 분들이 계셨고, 이에 대한 반박으로 이전 기출문제를 현 교육과정 내용으로 풀 경우 잘못된 답을 도출하게 되는 경우를 제시한 분도 계십니다. 하지만 개인적으로 이건 조금 다르다고 생각이 되는게, "자연수 n"의 해석은 교육과정이 바뀌더라도 크게 바뀌지 않지만 예시로 드신 문제의 경우 교과서의 서술/정의 자체가 바뀌었기 때문에 틀린 답이 나오는게 당연합니다. 교과서 자체가 학문의 엄밀한 정의를 완벽하게 따르고 있지 않기 때문에 수시로 공격을 받으면서 수정되어 나가는거에요.
물론 이전 기출문제를 근거로 가져오는게 타당한가 역시 가치관이나 사고방식의 영역이기 때문에 논란이 발생할 수밖에 없습니다. 판단은 평가원에서 알아서 해줄거고, 이번 논란을 계기로 엄밀하게 접근하는 것보다 사고를 유연하게 해서 어떻게든 답을 도출하는 전략을 배워가셨으면 좋겠습니다. 아무리 시험이 거지같고 엄밀하지 않더라도 정시라는 방법을 선택하신 이상 거기서 점수를 잘 받는 전략을 취하는 방법 밖에 없습니다. 그게 너무 싫거나 어려우면 다른 방법을 찾아야죠. 정시가 꼭 답인 것도 아니구요.
번외로, 고등학교 교과서의 극한 / 연속함수의 정의가 얼마나 비엄밀한지 설명할 때는 다음 예시를 들면 됩니다.
(추가) f(x) = x^x
답부터 말씀드리자면 놀랍게도 1, 2, 3, 4번은 모두 연속함수이고 5번은 연속함수가 아닙니다. 간단하게 설명하자면 연속함수의 정의는 정의역에서 연속인 함수이기 때문에 1/x도 연속함수가 되고, 3, 4번의 경우 극한의 엄밀한 정의를 사용하면 연속함수임이 증명됩니다. (고등학교에서 정의하는 극한으로는 상당히 애매한 상황이 생깁니다. 정의역이 1, 2, 3, 4, 5인데 x가 2로 다가갈 때 f(x) = x가 무한히 다가가는 값이란..) 또한, 5번의 경우 정의역이 양의 실수가 아니기 때문에 연속함수가 아닙니다. 정의역의 정의에 의해 x^x가 잘 정의(well-defined)되도록 하는 x는 양의 실수 + 음의 정수 + 분모가 홀수이며 분모와 분자가 서로소인 음의 유리수이고 양의 실수를 제외한 부분에서 문제가 생기게 됩니다.
이처럼 학문으로써의 수학은 자연어적 해석이나 추론에 의존하지 않고 모든 것을 엄밀한 정의에 입각하여 생각하기 때문에 고등학교 수학과의 차이점이 명확합니다. 수능에 이와 같은 문제가 나왔더라면 교과서의 오류를 지적하는 연구 논문이 한가득 나오고 문제 오류로 또 말이 많을텐데 이런 유형은 출제되지 않아서 다행이네요.
연속함수 문제에 대한 상세 해설은 아래 링크에 있습니다.
그리고 저한테도 '손도 못 대놓고 이제와서 오류라고 우긴다' 라고 조롱하실 분들을 위해 말씀드리자면 저는 04도 아니고, 애초에 수능판과 거리가 멀기 때문에 딜이 들어오지 않습니다.. 댓글들이 정말 살벌하더군요.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
지금 누구라인잡아주다가 2월에 그사람좆되고 탈르비했을거같음 ㄹㅇ임
-
표준점수를 보는 한의대 가능한가요? ex) 경희 부산 원광
-
수학 선택과목 어케하시나요ㅜ
-
인증을 할수도 없고 ㅎㅎ
-
나 저격 좀 5
해줘
-
대성 이미지 찍먹 해봤는데 나쁘진 않는데 뭔가 강의 들으면서 개념공부 하는데에...
-
0. 과탐을 선택하지 않는다. 1. 과탐을 선택하지 않는다. 2. 절대로 과탐을...
-
80의 벽을 넘기위해.
-
나는 개인적으로 학창시절 연애 추천함
-
대성 지원가능점수<- 이거 기준이 도대체 뭐임? 진학사 기준 적정인데 대성에선 불안...
-
저격메타 뭐임? 2
ㄷㄷ 무섭네
-
가채점을 잘못 적었을 확률이 높죠? 개쫄림
-
이제 두 번만 버티면 성적표 ㅎㄷㄷ
-
일단 초성만 떼고봐도너무야함 그리고 수시를 넣는다고 하는것도 음란함.. 뭘...
-
결국 돌고돌아 낙지인가
-
아니 하,,,, 가채점을 omr보고 적긴 했는데 마지막에 마킹 마무리할때 너무...
-
한국어능력시험은 홀수형 주네
-
OMR에 16이라 표기한 걸 26이라고 옮겨적었을 확률 3
흠 OMR이 위에서부터 0부터가 아니라 1부터 시작한다고 착각해서 두번째에 칠해진...
-
설대권 성적인 분들이 계신디 진짜 먼일임
-
가채점표를 안적어서 복기로 했는데 하나가 헷갈리는데 분명 맞는것 같은데 헷갈려서...
-
좀 꼴리지 않음?
-
맞팔하실분들 3
-
뭔가 야시시하지 않음?
-
성적은 동일하다고 치고 1. 기존에 하던 물1지1을 한다 2. 생1지1을 한다 3. 투과목
-
부담스럽다
-
1등인데 2등이랑 점수차 너무나는데 흠.. 텔그도 1등이긴함
-
16 20 연애될까요 12
나이차이 자체는 별로 안큰거같은데 대학생 중학생인게 좀 걸리네요..
-
진짜 몇 없는 친구 아웃백이나 사 줘야지. 나도 좀 먹어 보고
-
ㅈㄱㄴ
-
근데 이제 22수능시절의...
-
문과든 사범이든 필요없으니 서울대만 붙여주십쇼 제에에에에발ㅠㅠㅠㅠㅠㅠㅠ
-
좋지 않아요.. 두분께 처음으로 디올 향수랑 생로랑 립 드렸는데 환불하라면서 너를...
-
ㄹㅇ
-
진정성이 보여서 수능도 잘볼듯
-
굿바이..
-
백분위 정시 3
정시에서도 백분위가 영향큰가요?? 등급이랑 백분위가 계속 신경쓰이네요…
-
같이 공부한다해도 중간 중간 신경쓰일게 많은 거 같음 아예 시작 안 하는게 제일...
-
그냥 하루빨리 갈까
-
고고
-
어릴때 재미있게 봤는데
-
성공시:메디컬+설공 휙득 실패시:사탐가산에 교차도 힘들어짐
-
이번 수능 현역 미적 백분위 77로 3등급인데 도형 부분이나 가끔 4점 풀면 까먹은...
-
표정 진짜 킹받네요
-
철학 ㄱㄴ하나요 ??
-
내일부터 공부함 0
국수만 조금씩
-
시대인재 수학 미적분 현강을 들으려고하는데 강기원,김성호,송준혁,엄소연쌤의 각각...
-
진짜
-
국어 수학 애매하게 보고 탐구만 잘 봐서 불보정이면 좋겠는데....
-
사탐으로 메디컬 된다고 생각함? +8점이면 차이 큰거 아닌가..
이거지
이 글에는 감동이 있다
이거보고 서울대 수리과학과 가기로 했다
조롱하는것들이 제일 악질인듯 더불타게함ㅋㅋ
그나저나 교과서도 수학을 재대로 알려주진 못하는군요
문제가 엄밀치 못한건 납득하나 생2 20번 드립은 그냥 에휴이인듯
그나저나 mathbb 님이셨네요. 글과 자료 항상 잘 보고 있습니다. 연속함수의 정의는 작년에 수2 시간에 학교에서 발표하며 열변을 토한 기억이 나네요. 초코바 하나 들고서 “다음중 연속함수인 것을 모두 고르라” 는 문제를 냈었는데 아무도 못맞추다가 수포자 친구가 “사실 저거 다 답인거 아니야?“ 해서 초코바를 받아간 기억이... 그때 엡실론 델타 논법도 소개하고 했는데 애들 다 잤어요 ㅠㅠ
진짜 정자로기입하랄때 바지안내렸냐는 말이 개쌉공감임 ㅋㅋㅋㅋㅋ
우리 시험장에선 “또박또박” 기재하라고 나왔는데 ㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋㅋ
이드립 개웃기네
캬
개체수 음수도 인정 안했었는데 이게 정답 정정될 가능성은 0이라고 생각..