[칼럼] 자연과학을 공부한다는 것
새벽에 심심해서 써보는 글입니다. (물리학이나 화학을 특별히 비하하려는 목적이 아님을 미리 밝힙니다.)
자연과학과 수학은 언뜻 보면 비슷해보이지만 근본부터 다른 영역이다. 자연과학의 궁극적인 목적은 자연의 현상을 논리적으로 '잘' 설명하고 '잘' 예측하는 것이지만, 수학은 수학자들이 직접 정의를 하고 그 정의에서 출발해서 논리를 구축해 나가는 과정이다. 수학의 절대 전제는 모든 논리와 정리의 시작이 되는 공리들이고, 현대 수학은 ZFC 공리계에 기반을 하고 있으며 수학은 한치의 오차도 허용하지 않는다. 하지만 자연과학의 관점은 조금 다르다. 수학은 자연을 기술하는 도구일 뿐이며, 오차가 매우 작은 경우 이를 무시하는 것이 일상이다. 이를테면 공학도에게 원주율은 3과 사실상 동일하며 sqrt(1 + sin x)는 1 + x/2와 동일하다. 그런 비엄밀한 과정을 거치더라도 자연을 잘 설명하고 예측하면 그만이기 때문이다.
자연과학에는 크게 물리학, 화학, 지구과학, 천문, 그리고 생명과학이 있지만 그중 특히 물리와 화학이 자연과학의 특징을 잘 표방하고 있다. 물리학에서는 특히 수식적인 계산이 많이 사용되며, 앞서 언급한 공학 밈 역시 물리학의 수많은 가정에서 나온 것이다.
단진자를 생각해보자. 우리 모두 단진자는 단진동을 한다고 무의식적으로 알고 있다. 하지만 현실에서도 그럴까? 단진자가 단진동을 한다는 결론을 얻기 위해서는 단진자의 진폭이 매우 작다, 공기저항이 없다, 실은 너무 가벼워서 그 질량을 무시해도 된다, 진자는 너무 작아서 점으로 생각해도 된다 등 수많은 가정이 들어가있다.
하지만 수학자의 관점에서 이를 근사 없이 큰 진폭에 대해 해결하려하면 타원적분이 나오게 되고, 결국 아래와 같은 급수식을 얻게 된다.
여기서 세타 제로가 충분히 작으면 대괄호 안의 식이 1로 다가가 흔히 아는 주기 공식이 나온다. 수학자라면 이 식을 보고 뿌듯해하겠지만, 모든 물리학도가 그렇지는 않다.
따라서 물리학에 사용되는 모든 수식과 계산에는 오차가 따르고 이때문에 물리실험에서 모든 측정요소의 확장불확도를 계산해야 하는 것이다. (불확도는 물실이 학생들에게 주는 수많은 고통 중 상위권에 위치해있다)
(양자역학/물리화학 이외의 고등학교에서 배우는 느낌의) 화학은 반대로 계산량이 극히 적지만 논리가 없다. 항상 성립하는 규칙이나 법칙은 질량 보존 법칙이나 파울리 배타 원리 등을 제외하면 거의 없으며, 모든 규칙에 예외가 있다고 해도 과언이 아니다. 예를 들어, 일반적으로 극성 물질은 물에 잘 녹는다고 하지만 극성이 낮음에도 다른 물질보다 물에 잘 녹는 쌍의 예시가 알려져 있다.
화학은 사실상 인위적으로 만들어진 억지 학문이 아닌가 하는 생각도 드는게, 옥텟 규칙이나 이온성을 설명하는걸 보면 정말 답도 없다. 옥텟 규칙의 이유를 물어보면 "실험적으로 그렇더라" 라고 하고, 전자가 최외각 껍질에 8개가 들어갔을 때 가장 안정된 상태가 되는 이유가 무엇이냐고 물어보면 옥텟 규칙에 의해서 라고 답한다. 물론 예외도 차고 넘친다. 8개 뿐만 아니라 23개, 28개 등이 들어갔을 때 안정한 경우도 많으며, 이를 다 23전자규칙, 28전자규칙이라고 부르는 것도 아니다.
이온성을 설명하는 것은 더 끔찍하다. 고등학교 교육과정에서는 이온의 전하량과 이온 사이 거리만을 이용해서 녹는점을 비교하는 것 같은데, 이는 이온 결정의 격자에너지(Lattice Energy)를 이용한 접근법이다. 하지만 당연히 예외가 차고 넘치며, 이를 설명하기 위해 만들어진게 Fajans' Rule이다. 이온들은 격자에너지를 이용한 녹는점 비교에서 가정하는 것처럼 딱딱한 당구공이 아니기에, 서로 가까워질수록 음이온의 전자구름이 양이온에 의해 찌그러지는 편극 현상이 일어나 강제적으로 공유성이 일부 생기게 되어, 이것이 이온성을 낮추는 것이다. 물론 공유성이 높아진다고 녹는점이 항상 높아지거나 낮아지는 것도 아니다! 이 법칙의 목적은 격자에너지로 예측한 것과 정반대의 결과가 나왔을 때 "아무튼 편극에 의한거임" 이라고 설명하고 넘어가는 것이다.
이때문에, 어떤 이온 결합 화합물 두 개를 주고 녹는점을 예측하라는 문제는 다른 조건이 없다면 대학교에서 절대로 출제할 수 없다. 고등학교에서는 격자에너지만을 가르치기에 격자에너지로 예측 가능한 것을 내겠지만, 그게 아니라면 이론 자체가 결과를 설명하는 것을 중요시하고 있기 때문에 예측이 거의 불가능하다.
또다른 예시를 들어보자. BCl3, BBr3. BI3는 모두 루이스산이기 때문에 BF3도 강한 루이스산이라고 예상할 수 있다. 하지만 실제 실험 결과는 매우 약한 산임을 보여준다. 또한 BF3의 루이스 구조를 그리라고 하면 형식전하가 없는 구조를 그리겠지만, 실제 구조는 이중결합이 한 개 있어서 공명적으로 4/3중 결합을 하는 구조다. 그럴듯한 설명을 하자면, F의 크기가 너무 작고 B의 2p오비탈의 에너지 준위와도 비슷해서 B의 2p오비탈이 F의 전자를 받는 것이다. 이때문에 형식전하를 가지는 BF4 - (Tetrafluoroborate)는 매우 안정하다.
화학은 모든 것을 포괄하는 규칙을 만들면 너무 복잡해지기 때문에 어쩔 수 없이 적당히 간단해보이는 규칙을 만들고 거기에 예외들을 덧붙인 것으로 생각하면 된다. 따라서 규칙을 무시하지도, 얽매일 필요도 없다.
수학을 공부하면서 생기는 의문은 공리나 정의 자체에 관한 의문을 제외하면 모두 엄밀하게 증명할 수 있다. 하지만 자연과학을 공부할 때는 의문을 가지면 안 된다. 그것이 절대적인 진리인 것도 아니며, 몇 백년 전만 하더라도 태양계 행성들이 지구 주위를 공전한다고 믿었던 것처럼 현재의 이론도 현재까지의 지식과 기술로부터 유도해낸 합리적인 설명일 뿐이다. 가끔 자연과학을 수학처럼 접근하려고 하면서 모든 것에 의문을 가지는 사람들이 있는데, 그 사람들은 "자연의 섭리" 라는 말을 기억할 필요가 있다.
물론 수학도 연속체 가설처럼 일부 불완전한 부분도 있지만.. 물리나 화학에 비하면 아무것도 아니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
원래 환불 몇배로 해줬으면 돈 엄청 깨졌을텐데 논술2배로 뽑으니까 내년에 등록금으로...
-
몇달만에 재접했는데 길마가 되있음....왜 나한테 짬처리하는데
-
연논 vs 여행 0
4~10까지 여행 항공편, 숙소, 패스권 이미 지불
-
뻥임뇨
-
ㄴ첨가임뇨 0
사실 화작러라 잘 모름뇨
-
사수까지 해서 건대가는게 의미있을까
-
사람은 도대체 .... 뭐지다뇨
-
눈온다 0
첫눈이야 첫눈
-
1컷이 50이든 100이든 백분위가 같으면 최저 충족한 사람의 수는 같은 것 아닌가요?
-
대성마이맥 수학 기출 강의 추천 부탁드리고 싶습니다! 0
계속 찾아보고 있는데 애매해서리... 각 강사분들 기출문제집 문항수도 혹시 아시는 분 있으실까요?!
-
진짜모름
-
정시원서 컨설팅 안 받아주시나
-
https://www.instagram.com/reel/DC3WsRchI-N/?igs...
-
상남자행동
-
외고? 예고 다니냐고 물어보셨는데 아뇨 일반고 다닙니다. 라고 했어요ㅠㅠㅠ 실격 될까요
-
진짜로 음란한목적으로 쪽지거는 넘들이 있음,,,,,
-
나 경희대, 한양대, 서강대, 중앙대 논술 쓴 것도 합격 가능성 높아지는 건가?...
-
알려주세요
-
거기는 하나도 못가고 지방대 옴
-
사실 저 키 177임 10
-
생각해보니 영광의 순간이 아닌 순간이 없었다.
-
22학년도부터 역대 언매 최저 정답률 문제도 23수능에서 나왔는데 정작 평균은...
-
최적조교떨… 3
솔직히사문은수능때개처말아먹어서탈락ㅇㅈ 근데정법은 47>48>50인데 나왜떨어졋냐고…
-
둘다 경영
-
교육부 “연세대 논술 초과모집 인원, 2년 후 입시에서 감축” 2
https://www.etnews.com/20241127000423 교육부가...
-
혈육인지 나인지는 몰루? 집에서 주운건 마즘
-
연세대 논술 공감 16
재수때 최저 4합8 못맞춰서 그냥 안 감 ㅋㅋ
-
하면서 숨은키 2cm 찾았음요
-
연세대 2
수시 논술쓰고 1차안간사람은 못가는거임?
-
후회없이 사랑했노
-
둘 중에 고르라면 뭐 고를 거 같나요??
-
독하다독해
-
여긴 왜 실내인데 추워…으앙
-
이게 옳게됐지
-
이거 어카지 환불 위약금 시간당 2만원이라 환불도 못함
-
이론상 확통 1등급이 없을 수도 있나요? 확통이들이 모두 공통을 너무 틀렸을때
-
십의 자리에서 하면 ㄹㅇㅋㅋ
-
ㅇㅁㅇ
-
어렸을때 많이 했던 플래시게임인데
-
전기파트에서 0
알아둬야할 미분,적분 있나요
-
연논 환불 0
환불은 안해주디?
-
딱 나네..
-
수학 한문제 실수가 아쉬워서 이대로는 수능판 못뜨겠딘
-
키 소신발언 33
키 큰 게 좋으신가요? 갠적으로 심각수준만 아니면 키는 적당한 게 좋다고 생각합니다...
-
난 158인데. 14
그래서 여친이 나 찾을때 키 보고 찾는대. ㅠㅠ 팩트는 나도 여친 찾을 때 키로 찾는다는 거지만..
-
제가 좋아하는 세가지입니다
-
저걸 다 우리가 치워야 했었기 때문이죠
-
ㄹㅇ루다가
좋은글 항상 감사합니다
같은 고2인데 경외롭네요.
몇 개월 전에 맥스웰 방정식 공부하면서 질문했던 내용이...
자기장의 다이버전스 식에 대해 탐구하던 중 이에 대해 담임선생님께 질문했는데, 그냥 모든 관측 결과가 그 식을 지지하기 때문에 (관측되지 않은 예외가 이를테면 자기 홀극) 식을 사용한다라고 말씀하셔서 개인적으로 큰 충격이었는데...
포인트는 다르지만 그 일이 다시 생각나네요
공감합니다