수학2 교과서 개념 정리, 수능 개념 정리 및 증명
수학2 (함수의 극한, 함수의 연속, 미분계수와 도함수, 접선의 방정식) 관련 내신 개념 정리.pdf
자료 만들다가 공유해두기 괜찮을 것 같아 남깁니다.
<교과서 개념>
1. 함수의 극한
2. 함수의 연속
3. 미분계수
4. 도함수
5. 도함수의 활용 1 (접선의 방정식)
<수능 개념 + alpha>
1. 구간 별 함수의 미분가능성
2. 곱함수의 미분가능성
3. 절댓값 함수의 미분가능성
4. 기함수, 우함수
5. 0/0꼴 극한에서의 미분계수의 정의 활용 (수능 수학 수준에서 로피탈의 정리 대체 가능)
6. 곱함수의 연속성
7. 미정계수의 결정 ((분모)->0일 때 (분자)->0)
8. 미정계수의 결정 2 ((분자)->0일 때 수렴값 0 아니면 (분모)->0)
9. 편미분
10. 대칭성
11. 구간 별 함수의 연속성
+교과서 개념, 수능 개념은 한완수에서 인용한 표현이지만 실제로 <수능 개념 + alpha>에 미정계수의 결정 같은 것들은 교과서 개념으로 분류되었던 것으로 기억합니다. 성질과 관련된 것들을 전자, 그로부터 유도할 수 있는 것들 등을 후자로 확인해주시면 감사하겠습니다!
0 XDK (+1,000)
-
1,000
-
그냥 잘칠 거라는 미련을 버리고 봐야되는 건 아는데 0
그래야 진짜 마음 편하게 보는 건가 흠 아무튼 이제 언매 이 ㅆㅅㄲ<~버리고 화작...
-
대화에 못 끼겟어서 자러감뇨
-
다풀고 시간 20분남기고 15분동안 44번만 고민하다가 다행히 고쳐서 맞춤
-
씹덕) 급함 34
아부지가 내가 군대갔을때 이사갈수도 있다고 하는데 요거 미리 포장해놓는게 났겠지?
-
그냥 오르비에서 들어서 아는거
-
제 최애는 6
1등은 호시노 아이고 2등은 아카네임뇨 이유는 이쁨뇨
-
저거 마지막껀 이투스인가? 더프도 거의 대부분 서울대 스카이 나오거나 못보면 서성한...
-
일단 카나 싸대기 없애고 아쿠아가 사실 유서를 써놓는 거임 하늘에서 지켜볼테니...
-
진짜 잘껀데 0
저 잠 들때까지 글 쓰는것좀 멈춰보셈뇨
-
재수 평가 좀 2
작년 평백 77 이었는데 이번엔 86나옴 많이 별론가..? 난 그래도 많이 올라서...
-
8칸 추합 7
입시하면서 8칸 추합 처음봄 ㅋㅋ 개신기하네
-
최애의 아이 9
최악의 결말 1위 나히아가 장례식에서 부활해서 부동의 1위 등극
-
결혼생각은 4
2%정도 잇고, 자식 낳을 생각은 0% 정도 잇음뇨
-
정시 학종 영향 1
내년도 부턴 한양대에도 학종10%가 추가되는데 이러면 학종의 영향이 얼마나 미치나요?
-
이과생들 왠만하면 사문으로 런칠텐데 이럼 등급따기 다른사탐에 비해 빡셀듯
-
수1 수2 뉴런+수분감 미적 시발점 +쎈 할건데 하루에 8시간 정도 수학 한다고...
-
정시컨설팅 0
Ida 정시 컨설팅 받아보신 분 계신가요….. 후기가 없어서 모르겠어요….살려주세요…….
-
중학교 3-2 중간고사 평균 98.1로 전교 2등한거랑 고3 10모 국수탐...
-
반박 안 받음
-
왜냐면 그럼 난 면제나 공익이니까..
-
아묻따 생윤사문이 맞나요
-
에라 모르겠다 0
낙지 실지원 987칸으로 박아놔야지 ㅋㅋ
-
학교 선생이 주제 같은거 ㅂㅅ 같이 잡아놔도 그거라고 따라가야 함 ㅈ 같네 ㅋㅋㅋㅋ
-
반박시팥첩
-
국어 유기하고 수학만 파는거 어떻게 생각하시나요?? 영어 간간히 하고
-
군대 + 학부 + 석박사 존나 빠르게 딴다쳐도 8~9년임뇨
-
기원합니다
-
어차피 나 죽으면 이세상은 다 끝나는거라고 생각함 그리고 내 한 몸 부지하기도...
-
ㄹㅇ
-
오늘 용잡고 겉날개 5개 얻음
-
일단 키가 2컷이니 얼굴 6등급이라고 치고 4등급 맞는듯뇨
-
그래도7등급은됨뇨
-
오늘은 탕수육 대짜만 벌자
-
그러기엔 외모9등급이라 운동이랑 피부관리부터 하는중….
-
과제랑 이것저것 하려고 샀는데 과제 -> 수업 전부 다 중간기말만 봄 웹서핑 ->...
-
결혼 빨리 하고 싶은데 39
자식 2명 정도는 낳고 싶음
-
배성민vs정병호 0
누구들을까요 이번 수능 4떳고 배성민은 빌드업부터 정병호는 프메 기본부터 들을거...
-
결혼메타구뇨 6
20대 후반이 목표에요
-
ㄹㅇ이..
-
운동도 안하고 만날 사람도 없으면 잘 안 씻게 됨뇨 8
사실임뇨
-
감각적 직관 +-1 정도
-
내년 사탐공대 2
대학마다 내년도 정시에서 과목별 반영비율이랑 사탐 가능 대학 발표는 언제 하나요?
-
땀이 줙내 나는게 어케 안 씻지 하루에 2번정도는 씻는게 맞음뇨
-
이제 누가 방송해주냐....
-
솔직히 개별주식은 내가 한다고 되는것도 아닌것 같은데, 관심도 너무 많이 필요한 것...
-
작년에 이어 올해도 어김없이 수능이 끝나고 군수 물어보는 분들이 많은데요, 수능도...
-
머리를 안 감는다가 아니고 굳이 "매일" 감지 않는다임 4
땀이 안 나니까 괜찮다고 생각해오
사랑해요
참고로 9. 편미분 같은 경우 한국에선 대학 미적분학에서 처음 배우는 것으로 알고 있지만, '도함수의 정의'를 활용하는 수2 유형 중 'f(x+y)=f(x)+f(y)+ax^2y+axy^2-bxy+2'과 같은 항등식을 제시해줬을 때 편미분을 활용하면 도함수의 정의를 활용할 때보다 조금 더 빨리 문제를 해결할 수 있어 넣었습니다. 다만 파일에 있는 부분은 도함수의 정의처럼 편도함수의 정의를 써둔 것이고 실제 연산은 밑 영상 참고하시면 좋을 것 같습니다!
https://youtu.be/NKazLqcU-Fk
논술과 수능을 모두잡는 ㄷㄷ
증명은 한 번쯤 직접 해보시면 학습에 도움이 될 것 같고 결과적으로 수능을 보기 직전에는 자료에 있는 개념들을 활용할 때 '머릿속으로 증명을 훅 훑고 지나간다는 느낌으로' 조건을 잘 확인하고 활용해 문제 풀이 시간을 단축하시면 좋을 것 같습니다. 이를테면 '구간 별 함수의 미분가능성'을 사용할 때 구간 별 함수가 미분가능한지 확인하고, 가능하다면 미분계수의 정의를 쓰는 대신 함숫값이 같음과 미분계수값이 같음을 바로 이용하는 거죠! (그나저나 기본적인 것을 옮겨둔 거라 몇 고2 분들께 도움이 되었으면 했는데 생각보다 많은 분들이 감사를 표해주셔서 신기하네요 ㅋㅋㅋㅋ 잘 활용해주셔서 저도 정말 감사드립니다! 다들 '스킬'에만 의존하지 말고 왜 그런지 '증명'에도 초점을 두셨으면 좋겠습니다)
와 대박이네요... 근데 선생님 혹시 실전에서 로피탈의 정리 사용해보신 적 있으신가요? 아니면 하나의 극한식을 바라보는 색다른 발상 정도로 여기시나요?
고2 올라가며 처음 수2 배울 땐 썼었는데 고3 되고 수능 수학에 대한 이해도를 키워가는 동안은 로피탈의 정리를 사용하기 전에 확인해야할 조건이 까다롭다 느껴서 자료에 있는 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 극한을 처리했던 것 같습니다. 수2 수준에서 로피탈의 정리랑 연산량은 같은데 확인해야할 조건이 조금 더 직관적이고 교육과정 내라는 점에서 마음이 놓였습니다. (개인적인 생각으로 수2는 '미정계수의 결정'과 '미분계수의 정의'에 익숙한 상태를 만든 후 '0/0꼴 극한에서의 미분계수의 정의 활용'으로 맞이하는 극한들을 처리하는 게 이상적이라 느끼고 미적분은 '0/0꼴 극한에서의 미분계수의 정의 활용'을 사용할 수 없는 분모에 있는 함수의 미분계수가 0인 경우 (lim x->0 [tan(x)-sin(x)]/x^3 같은 거) 등에는 인수분해나 유리화 등을 통해 해결하는 것이 이상적이라 느낍니다. 물론 이 예시의 경우 '테일러 전개'를 활용해 다항함수의 극한 꼴로 해결할 수도 있지만 ㅋㅋㅋㅋ 그건 로피탈의 정리보다 더 한 교육과정 밖 내용이니까요! 근데 말하다보니 대표 함수들의 테일러 전개식을 활용한 함수의 극한 처리에 관한 자료를 만들어보는 것도 재밌을 것 같네요, 미적분에서 삼각함수의 극한 처리할 때 1-cos(x)를 x^2/2로 생각하는 것 같은 거도 사실 테일러 전개식에 기반해 설명하면 직관적으로 받아들일 수 있거든요)
경제학은 위대합니다 ㅎㅎ
선생님 감사합니다. 혹시 미적도 가능하신가요?
자료의 핵심이 '절댓값 함수의 미분가능성', '구간 별 함수의 미분가능성', '곱함수의 미분가능성' 등 직접적으로 교과서에서 소개하진 않는 개념들에 대한 소개와 증명이라고 생각하는데 이는 미적분에도 똑같이 적용되기 때문에 어떤 내용을 다루는 것이 좋을지 잘 떠오르지 않습니다.
자료의 앞부분처럼 간단히 어떤 내용을 다루는지 정리하고 (수열의 극한에 관한 성질, 급수, 초월함수의 그래프와 극한, 초월함수 미분법, 치환/부분적분법, 구분구적법, 2차원 운동 등) 제가 공부할 때 중시했던 점들을 적어두는 건 마찬가지로 자료의 시작을 열기에 좋을 것 같아요.
중후반 내용의 경우 지금으로서는 초월함수의 극한을 다룰 때 sin(x), tan(x), e^x 같은 것들을 테일러 전개로 전개한 식을 테일러 정리, 테일러 급수에 기반해 소개하는 것, (다항함수)*(초월함수) 같은 식 꼴의 그래프를 미분없이 그리는 법 (대표적인 유형 기억), 치환적분법과 부분적분법 같은 것을 연습하기 위한 [sec(x)]^3 따위의 적분 정도가 떠오르는데 혹시 제가 다루었으면 하는 내용이 있을까요?
+첨언하자면 본글의 자료 뒷부분은 한완수 수1/수2 상중하에 기반해 서술했는데 미적분의 경우 제가 아직 하는 공부하지 않은 상태이고 상도 여러번 공부하진 못한 상태라 이번 자료만큼의 퀄리티 혹은 의미는 지니지 못할 것 같기도 합니다 ㅜ 비슷한 느낌으로 미적분도 제작해 올릴 수는 있겠으나 이번 자료만큼 깔끔하게 정리하기에는 제 내공이 부족할 것 같네요
초월함수를 제가 매끄럽게 다루지 못한다..? 라고 해야하나 그런 느낌이 있어서 한 번 질문을 해 보았습니다. 지금 올려주신 자료만으로도 충분히 감사합니다.
초월함수의 그래프를 매끄럽게 다루는 것과 관련해서는 이 영상을 참고하시면 좋을 것 같습니다.
https://youtu.be/xp7OG3xnC4w
감사합니다
수1이나 다른과목도 해주실수 있나요?
개인적으로 실전 개념과 그에 대한 증명을 공부하는 것이 학습에 큰 도움이 되는 경우가 수2와 미적이라 느끼긴 합니다만 고려해보겠습니다.