흔한 과고생의 [9월대비 MC THE MATH] 후기
안녕하세요
9월대비 MC THE MATH 모의고사 리뷰 및 후기입니다!
[총평]
점수 : 100 (85분)
난도 : 6/10 (6,9평 정도)
최근 평가원 기조와 유사한 구성인 것 같습니다
선택 미적분은 쉬운 난이도로 구성되어 있고,
공통 4점 문항들이 어느정도 빡빡하게 구성되어 있습니다.
조건들 하나하나 유기적으로 연결되어 있어서 재밌게 풀 수 있었고,
다양한 주제에 대한 시사점들을 많이 담아내신 것 같습니다.
(항상 좋은 모의고사 만들어주셔서 감사합니다!!)
[세부 문항 리뷰]
#10
‘다항함수’라는 점을 이용하여 미정계수법으로 f에 대한 식을 바로 구할 수 있습니다
#11
극한의 존재성 조건을 이용하여 중근1, 단일근1 로 구성된 것임을 알 수 있고,
두가지 케이스를 각각 확인하여 보면 쉽게 구할 수 있습니다.
#12
(나) 조건에서 등차중항의 원리를 이용해 분자=0 이여야 한다는 내용을 도출할 수 있습니다.
이후 (가) 조건에서 약수관점으로 d를 구할 수 있습니다.
#13 (패스)
#14
‘부호변화’를 기준으로 살펴본다면 ㄷ 선지에서 가능한 f의 식이 하나로 귀결됩니다.
#15
어려운 해석을 요하지는 않으나 케이스를 잘 나누어 하나하나 계산해야하는 문제였습니다.
0,1을 기준으로 대소관계가 변한다는 점을 파악하고,
각각 케이스를 직접 계산해 주어야 합니다.
(직접 구하게 시킬 줄 몰랐는데 생각보다 계산이 많네요)
#20
(나) 조건을 조작하여 새롭게 함수를 정의하고, ‘증가’조건을 이용하는 문제입니다.
특히 (f-f’)’에서 (풀이에는 g’) 부호변화가 나타나면 안된다는 점을 통해 바로 중근임을 알 수 있교
이후 조건에 따라 계산하면 f를 구할 수 있습니다
#21
삼각형ABD를 그리고, 조건(AB=AD)와 원주각 성질로, 이 삼각형이 정삼각형임을 알 수 있고,
이후 각ACB를 기준으로 코사인법칙을 사용하면 AE를 구할 수 있습니다.
#22
(가)에서 f-f’ 형태의 조건으로 힌트를 준 것 같습니다.
(나) 조건을 정리하여 f-f’ 형태로 나타내면, 0,1,2,3에서 함수값이 동일함을 알 수 있고,
이를통해 식을 세운 뒤
(가)의 ‘세 실근’ 조건을 통해 4차함수가 3개의 실근을 가질 조건을 찾아주면 됩니다.
#26
R1이 바로 직각삼각형 ABD와 같다는 것을 파악하면 계산이 편해집니다.
공비를 구할때도 특수각의 성질로 쉽게 구할 수 있습니다
#27
묻는 값이 (a-1)^2임을 읽었으면
해당 형태가 나타나도록 식을 구성하여 답을 구할 수 있습니다
#28
함수는 쉽게 그릴 수 있죠.
변곡점에서의 접선이 주어진 케이스임을 파악한다면 답을 바로 도출할 수 있습니다.
(사실 감각적 직관 + 특수특수 로 변곡점임을 알 수도 있습니다)
#29
평행선이 주어졌으므로 엇각의 성질로 모든 각을 결정할 수 있습니다.
이후 삼각형OAB, 삼각형BCD 에서 사인법칙으로 변을 표현해 주면 답이 바로 나옵니다.
#30
조건에서 f를 0이상에서만 주어진 것으로 구간별 함수일 것이라고 파악할 수 있습니다.
g에서 인수논리로 연속함수가 되는 케이스를 생각할 수 있습니다.
중간 계산에 기함수 정적분 => 0 으로 계산이 수월해지도록 만들 수 있습니다.
[손풀이]
실제 푼 그대로라 조금 지저분할 수 있습니다. ㅎㅎ
(파블모 받고싶어요..!)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
헬스터디 보니 평균5~6에서 평균3이 평균3에서 중경시 가는것보다 더 힘든듯 0
난 둘다 했어 ㅎㅎ
-
오뿌이 잘래 1
잘자
-
음역시귀엽군
-
열릴 예정 당첨되면 연휴 내내 아플 예정 ㅋㅋㅋㅋㅋ 짜릿해 이런거까지 가챠를 하게 될 줄이야...
-
생2 고마웠다 ㅠㅠㅍ
-
으,흐흐흐흐흐흐흐히하하하하하하하!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!...
-
푸리나 실검인거 보고 무서워졌어
-
미필 지방대 가정했을때 어디 선택하시나요??
-
술찌러 우럿어 1
-
수능에서 비문학 과학기술 지문 풀때 1년동안 최신과학기술 동향 뉴스 같은거 봤던게...
-
이분은 경희대 무역학과에 붙었으며 에타에서 수없이 저격당하는 것은 물론이고 같은...
-
작수 공통1틀 미적4틀이고 수1수2 뉴런 한번더 들으려고했는데 인강내용이 이미...
-
실검의 상태가...
-
대단하다..
-
그럼 한의사는 더 망하는 건가 그냥 올해 한의대 가면 수능 안보고 빨리 졸업하는 게...
-
무슨 얘기 중이신가요? 11
궁금궁금
-
제일 기대 많이됨
-
여기 어디지 1
-
이정도면 그래도 친절한 편임?
-
노로바이러스 걸린 친구 치킨 뺏어먹었는데.. 본격적으로 먹기전에 세조각 덜어가긴했음
-
벌써 2주 지남???
-
우리학교 선생 레전드인게 내친구 25수능 미적 84점 백분위 93인데 얘한테 공부...
-
라인업이 좋아
-
돈을 얼마나 쓴겨
-
"라라랜드" 진짜 보고 머리 띵했음 반박은 안받음 솔직히 라라랜드 영화 1위 인정하지않나요?
-
조중휘 vs 김기현인데… 재밌겠네 ㅋㅋㅋㅋ
-
수치플 썰 222 13
중학교 1학년 때 반에서 남자 여자 옷 같이 갈아입음. 다 그러자 분위기라서 그땐...
-
얼추 조발 다 한것 같네요 하필 가나다 다 국공립 적어서
-
현재 예비 고1이고 대성패스 처음 사보는데 값이 더 싸기도 하고 내신과 수능기초...
-
로맨스 영화 11
해리가 샐리를 만났을때 그시절 우리가 좋아했던 소녀 말할 수 없는 비밀 조제 호랑이 그리고 물고기
-
여기 완전 이상한데인줄 알았는데(커뮤에 대한 인식 안좋음) 여기 사람들 짱착하고...
-
레전드 낭만 썰 10
은 귀찮고 재밋는 피타고라스 증명 하나삼각형 변 길이 a,b,c라고 하면 여기서...
-
재밌었잖아 니달리만 없었으면 이겼는데.. 니달리.. 그놈의 니달리..
-
누가누가 잘찍나 14
어떤 동물 종 P에서 몸 색깔을 결정하는 유전자 C의 대립유전자는 Cr, Cb,...
-
= "고른햇살" 맛도 보통 가격도 보통인데 왜 인기인지 모르겠음
-
진짜임
-
수학 문제 0
n제 문제 해설이 이해가 안가서 카톡방이나 지식인에 문제 올리고 풀어달라한것도...
-
머임요?
-
팬이 되어버렸어요 꿀깅 쵝오
-
진짜 돈복사일거 같은데
-
미누 욕 뒤지게 먹었을듯... 누가 좀 미3누한테 알려야할듯 ㅋㅋㅋ
-
‘실력있는 선동가 되기’ 민노총, ‘선동 학교’ 연다 25
민주노총이 산하 노조 간부들에게 선동 방법을 교육하는 ‘선동 학교’를 연다고...
-
첫사랑썰 있음 2
안알려줌.
-
경희대 최합한 사람 그냥 2월 10일까지 기다리면 되나요? 0
모 그 사이에 해야할 일 이라던가 없는거죠...?
-
중증외상센터 웹툰임
엠씨더맥스 노래도 불러주세요
헉! 잘 모르는데.. 연습해서 오겠습니다!
아니 과고생인데 수능수학까지 잘해버리네....ㄷㄷ
앜 아닙니다 ㅎㅎ
히히 감삼다
그저GOAT,,,
나랑 다른사람이야
거리.감 느껴져
흐엉
9평 망친 허수인걸요...
글씨 진짜 힐링되네 goat