벡터=좌표라고 생각하면 큰 낭패
[기하 선택자(또는 수리논술대비)를 위한 칼럼]
기하, 즉 도형에서 가장 중요한 것은 점이에요.
모든 도형은 점으로 이루어져 있기 때문이죠.
도형에 대한 연구는 고대 그리스 시절부터 아주 활발했습니다.
직선, 각, 삼각형, 원 등 평면도형에 대한 대부분의 성질은
무려 2천년전에 “유클리드”님이 다 정리해 놓으셨다죠.
그런데 미친넘천재 유클리드도
정의하지 못한게 하나 있으니
그것은 바로 '점의 위치'입니다.
우리가 중학교때까지 배우는 도형들은 위치가 없죠.
그냥 어딘가에 있는 삼각형, 원 이렇게 배우잖아요.
고등학교 수학에서
점의 위치를 나타내는 방법을 두 가지 배우는데,
첫번째가 좌표로 점의 위치를 나타내기
두번째가 벡터(두두둥장)로 점의 위치를 나타내기
이 두가지는 아예 개념이 달라요.
그림으로 표현하면 아래와 같습니다.
1. 점의 위치를 x, y 좌표로 나타내는 방법
익숙하죠?
모든 점의 위치를 원점을 기준으로 생각하는 것이죠.
생각해서 존재하는 데카르트님이 좌표평면을 떠올렸다네요.
2. 점을 가리키는 벡터를 이용해서 나타내는 방법
원래 벡터는 위치가 아니라 크기와 방향으로만 정의가 되는데
모든 벡터의 시점을 통일시키기로 약속하면 한 점과 어떤 벡터는
반드시 일대일로 대응이 되는거죠.
이걸 점의 위치벡터라고 합니다.
따라서 그냥 위치벡터가 아니라,
점A의 위치벡터, 점B의 위치벡터인거에요.
그럼 좌표로 하면 되지 뭐하러 굳이 왜 벡터로 점의 위치를??
이라고 생각할 수도 있겠네요? 그 이유는 뭘까요?
벡터로 하는게 편한 경우가 있어서에요.
좌표로 점의 위치를 나타내면 원점을 기준으로 해서
점의 위치를 절대적인 값으로 나타냅니다.
그런데 점의 절대적인 위치를 알고 싶은게 아니라
이 점이 쟤랑 걔 사이에 정확히 중간에 있어.
아니면 얘는 쟤랑 거리가 몇이래.
이런걸 표현하고 싶다면? 굳이 좌표가 필요없어요.
점들 사이의 상대적인 위치만 있으면 되니까요.
이럴 때는 벡터가 훨씬 편하네요.
예) 점P는 점 A와 점 B의 중점이다.
이걸
이런 식으로 표현할 수는 없겠죠?
그런데
벡터로 표현하면
이렇게 표현을 할 수 있어요.
점은 연산이 안되지만 벡터는 연산이 되니까요.
직선이나 원 같은 도형의 방정식도
위치벡터로 나타내면 훨씬 편리하답니다.
물론 벡터의 용도는 여러분의 상상 이상으로 훨씬 더 많아요.
여러분이 즐겨하는 게임에서
벡터가 광범위하게 활용되기도 하죠.
그리고 대학에서 배우는 벡터는
평면기하와 별로 상관이 없는 추상적인 개념이고....
설명하자면 끝도 없는데
일단 평면벡터만 생각해서 예시를 들어봤어요.
[결론]
여러분이 기하 선택자라면 (그래서 읽고 있겠지만)
위치벡터의 개념부터 제대로 잡고 시작하세요.
만약 위치벡터를 이해 못하면,,,
갑자기 나오는 벡터에,,, 도대체 이걸 왜 배우는건지,,,
삼각형 평행사변형, 그림놀이 열심히 하다가
갑툭튀 등장하는 내분점 공식같은걸 보면서 이건 또 뭐지...
배운건데 왜 또 나오지.... 그러다가 준킬러님 두두둥장
하시면 손도 못대는 경우가 생겨요.
기하에서는 30번 레벨 벡터문제까지
반드시 맞추도록 대비해야겠죠?
그래야 미적분 선택자에게 불리하지 않으니까요.
벡터는 확실히 잡고 갑시다!
------
여기까지는 정보성,
아래부터는 잠시 상업성을 띠는 점 양해부탁드리며...
[수업안내]
올해 기하는 수능 대비 현강이 별로 없는 듯 해요~
그래서 6평 대비 수업을 합니다!!
장소는 대치동 디오르비! 시간은 목요일 6시반부터!!
현장강의 + 라이브 입니다.
6평대비 3주 특강 <16416-기하>
이번 수업으로 기하, 특히 벡터에 대한 감이
확실하게 잡힐 거라는거 자신있게 말씀드릴게요.
지난 수업은 복습영상으로 수강가능하고요.
이번 수업 교재 뿐만 아니라 개념교재도 무료로 드립니다.
그동안 대충 알고 있던 개념을 완벽히 정리하면서
킬러가 체계적으로 풀리도록 만들어 드리는 수업이에요.
신세계를 경험하고픈 기하러는 다들 오세요.
제가 책임지겠습니다.
[16416 수강신청 링크]
https://academy.orbi.kr/intro/teacher/252/l
기하의 기초
평면도형과 도형의 방정식을 총정리하는
<아름다운 시작 - 도형>도 강추입니다!
[이승효T 특강 수강신청 링크]
https://academy.orbi.kr/intro/teacher/256/l
문의 : 디오르비 02-522-0207
칼럼이 도움되셨다면 좋아요와 팔로우 부탁드릴게요.
상승효과 이승효였습니다 :-)
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
먹어도됨?
-
?왜눈옴 0
뭐지 눈 안온다매 기상청아
-
학교종이땡땡땡 0
어서모이자
-
별 기대는 안됨
-
홍은채 뺏어올까
-
개미핥기 혀 존나 김 진짜 ㅈㄴ 길음.
-
예비번호 봐야합니다..
-
현역 고3 모고 보면 84정도나오는데 뭔가 구문해석을 못해서 느리게풀고 몇몇개는...
-
ㅇㅈ 1
어 인정할게
-
저메추 0
받을까?
-
이런 ㅆ발 7
PT 11신데 1신줄 알았다 FUCK
-
[속보]헌재, ‘마은혁 불임명’ 권한쟁의심판 선고 연기···10일 변론 재개 2
헌법재판소가 최상목 대통령 권한대행이 마은혁 헌법재판관 후보자를 임명하지 않은 것이...
-
점심인증 3
-
물리 왜 함 0
ㅋㅋ 취향 참
-
번역 요청 여러건[이제 1개남음;], 또 회의통역... 진짜 괴로우나 즐거우나 나라...
-
무한도드래 20
어디선가 본 문제 해설은 모름 뭔 인도 유튜버가 설명하던데
-
반갑다
-
더위 많이 타서 시대까지 걸어가는 10분 동안도 손 선풍기 들고 등원했었음 지하철...
-
늦버기 8
ㅎㅇ
-
시력 한 9.5만 되도 더 안 바랄텐데 하아
-
으으으 2
ㅋㅋ
-
징역문제랑
-
와 바람소리보소 10
ㅈ대네
-
집가자 0
ㅇ
-
“법치국가 신뢰 깰 수도”…시민단체, 문형배·이미선·정계선 재판관 고발 1
서민민생대책위원회, 문형배 헌재소장 권한대행 등 3명 고발 서울 종로구 헌법재판소....
-
어디가실건가요 애리카는 1학년 휴학 못해요 ㅠ
-
1.
-
과외1시간전 2
실시간으로 쫄리는 물개
-
오늘 외출시 6
짧은 양말 신지 않기 ㅈㄴ 후회되네
-
체인소맨되기
-
점메추해드릴게요 8
제가 먹은 걸로 해드릴게요 뿌셔뿌셔 바베큐맛 ㄱㄱ
-
알바천국보고 문자했어 근데 읽씹하던데 이거 뭐냐
-
尹측, 헌재 `투표자 검증` 기각에 "음모론 치부, 예단"…다시 신청 1
윤석열 대통령 측이 헌법재판소가 탄핵심판에서 21대 총선 당시 인천 연수을 선거구의...
-
샤프 내가 좋아하는 캐릭터샤프 2000원짜리 샤프심 다이소 4개 1000원 썻는데...
-
영어 공부 언제하지
-
오랜만에 밖에 나가봄 10
연대생 줠라 많음 가렌 e쓰고 싶엇음
-
피티 개비싸네 11
에휴 20회 다니면서 일단 배우고 그 뒤엔 알아서 기구 쓰면서 운동 해야겠다
-
으헤헤 2
기분 좋은 거 하러가자
-
어디를 고르실건가요? 대전살아요
-
추천 좀 6
고고
-
더 이상 물러날 곳이 없어서 하는거 유전에 몇 년을 꼬라박았는데 생명 실모를 몇 백...
-
동국대의 악몽 0
108계단
-
레전드 사건 발생 ㅋㅋㅋㅋㅋ
-
하
-
오노추 4
오토코노코 추천 이라는뜻
-
오노추 6
가사 없ㄷ음
-
[단기] 생1 및 화1 평가원 기출 보고서 검수진 모집 0
안녕하세요~ IFSIGHT입니다. 2월 11일에서 16일 중으로 1회 출근하여...
-
헬스할때 4
에미넴형님노래 안들으면 각성이 아ㅏㄴ댐 루즈유어셀프 베놈 위드아웃미 고질라 모킹버드...
-
어디가 베스트인가요
벡터를 변화량이라고 인식하니까 그 의미가 와닿더라고요. 생긴건 가만있는 선분인데 움직임을 표현할수있다니. 단순한 표현 하나로 복잡함을 정리하는 수학의 아름다움이 느껴집니다.
단순한 표현 하나로 복잡함을 정리하는 수학의 알흠다움. 크~
우왕 미적해야징
대박 재밌겠다... 내가 재수했다면 바로 기하했다
쪽지 드려도 되나요
네~
쪽지 답장 부탁드립니다
수학과는 사학과네요..