한석원모의고사에 있는 수학문제 하나만 풀어주세요.
게시글 주소: https://video.orbi.kr/0003823598
빡모 2권 3회 20번 로그함수의 그래프 문제입니다.
책이 없으신 분들은 제 설명을 참고해서 이해해주세요..ㅜ
함수 f(x)=log2x에 대하여 y=f(x)와 y=1/x의 교점이 P
y=f(x)와 y=-x의 교점이 Q
P의 x좌표가 a, Q의 x좌표가 b입니다.
ㄱ. 루트2 < a < 2
ㄴ. f(x)의 역함수 g(x)에 대하여 g(-1/a) = f(a)
ㄷ. f(a/b) < 루트2
ㄱ, ㄴ이 맞다는건 풀었는데 ㄷ을 못 풀겠네요..ㅜㅜ
오르비회원님들 알려주세요ㅜㅜ
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
등급만 보나요 생기부도 보나요?
-
제가 요즘 헬스를 하는데 자세가 이상한지 승모근도 같이.. 생기더라구요 이거 자세...
-
뭐 해야될까요.. ㅜㅜ 확통 사탐 한의대 인원 엄청 적어졌던데...
-
윤사라는 과목을 하면서 선대의 훌륭한 인간이 어떻게 생각을 해왔고 나 또한 어떻게...
-
오른쪽으로 괴고 잤는데 일어나니깐 오른팔에 힘이 안들어가는 정도가 아니라 덜렁...
-
수시 정시 갈드컵 하는 동안 세상은 미친듯이 빠르게 변화하는중 원서 다 썼다고...
-
아는 사람 답 부탁
-
이미 재수해서 삼반수 할까 고민중 국어 백분위94(커리어 하이 보통 2등급 초반...
-
공통 및 미적분 실전개념 거의 모릅니다 고2모의고사는 거의 백분위99뜹니다 고3꺼도...
-
잊은 줄 알았는데 꿈에 나와요 일하러 가야하는데 하
-
시발
-
작년이나 제작년 케이스 아시는 분 없을까요..
-
연세대 정시에서 내신 반영한다던데 내신 버리고 정시 공부만 해서 6점대입니다 연세대...
-
둘다중고 2019년 맥북에어 vs 갤럭시탭 s8 sn-x706 뭐택함 6
전자는 노트북 맥북 인데 2019년도 맥북에어....상태는 최상급 후자는 갤럭시탭...
-
솔직히 중경외시 목표면 갓반고도 좋은 거 같아요... 6
이번 졸업생들 입시 결과를 잘은 안 봤지만 그래도 수시로 서성한 20명 넘게...
-
영재고면 영재고고 자사고면 자사고고 일반고면 일반고지 요즘애들이상한말참많이만드네
-
비교내신 1
적용대상이면 불리한건가요??? 수능성적으로 반영한다는데
-
전교생이 노는분위긴데 3년간 혼자 꿋꿋하게 공부한다는게 16
정말 그렇게 쉬운일일까요? 그리고 ㅈ반고여도 한과목원툴 퍼거들이 존재하지 않는다는...
-
ㅇㅂㄱ 8
-
아 대학 좀 보내달라고
-
확통런한 미적러 입니다. 공통 14 21 22 틀이고 미적 27 28 29 30...
-
배고프다 0
진짜 ㅋㅋ
-
애초에 정시에는 수시다떨어져서 강제로 정시로 가는애들도 수두룩한데 얘네도...
-
불가능이라고보내면 안가도되죠?
-
고1 ~ 고3까지 모의고사 12개 + 수능 13연속 1등급이었지만 대부분의 모고...
-
너무 쫄린다 2
설마 f를 받진 않겠지…
-
나만 시간이 멈춘 느낌
-
쩝 0
조용하니 재미가 없고만
-
언제??
-
나만 튕겼음? 3
5분 정도 튕겼는데
-
내가 왔다 9
다들 잘 지냈습니까
-
깨있는 사람 1
생존신고 하고가
-
젠장못잤어 2
크아악 버스에서자야겠다
-
헉 1
헉
-
ㅁㅊㅎㄱ ㅅㅍ ㅎㄴㅈ
-
엄 6
um
-
준 0
june
-
식 0
sick
-
쎄하네 4
하
-
고1까지 내신 좋았는데 고2때 완전히 내신 망치고 고3때 정시로 튼 입장으로써 1도...
-
ㅠ
-
그렇게...무한N수의길로
-
그렇게 그는 7일 무수면을 하고
-
현역이 그냥 없던데...
-
하고 싶은게 많고 좋아하는 일이 많다는 건 좋은 것 11
가끔은 노래를 들으며 가슴이 뛰고 사업 아이템이 떠오르면 즐거워지고 수능문제가 슥슥...
-
하 0
뒤숭생숭하네 아주 많이
-
다들 굿밤 3
행복하시길
ㄴ이 맞나요?
네
좀 재미없는 풀이지만 올립니다. 다른 좋은풀이가 있을거같은데...
f(a/b) = f(a) - f(b) f(a)=1/a f(b) = -b 이므로 1/a + b 의 범위를 구하면 됩니다.
ㄱ에서 1/2 < 1/a < 1/ root2 이므로 1/2 + b < 1/a + b < 1/root2 + b 인데 여기서 1/root2 + b=< root2 이면 ㄷ이 성립합니다. 즉 b=< 1/ root2 이면 ㄷ이 성립.
f( 1/root2) = -1/2 이므로 x= 1/root 2 에서는 f(x)가 y=-x 보다 위에 있습니다. 따라서 b< 1/root 2 이므로 ㄷ은 참입니다.