2022학년도 6월 모의고사 수학 영역 분석 및 향후 전략
2022학년도 6월 모의고사 수학 영역 분석 및 향후 전략
안녕하세요. 진주환 강사입니다. 이번 6월 모의고사는 잘 보셨나요? 6월 모의고사 수학 영역 분식 및 향후 전략에 대해
작성해보았습니다.
2022학년도 6월 모의고사 수학 영역은 수Ⅰ, 수Ⅱ 전 범위로 출제된 공통과목과 확률과 통계, 미적분, 기하로 이루어진 선택과목으로 이루어진 첫 시험이다. 이 같은 혼란스러운 상황 속에 6월 모의고사에서 드러난 공통과목과 자신이 선택한 선택과목의 출제특징에 대해 파악해 보겠다.
| 대단원 | 소단원 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 계 |
2점 | 2점 | 3점 | 3점 | 3점 | 3점 | 3점 | 3점 | 4점 | 4점 | 4점 | 4점 | 4점 | 4점 | 4점 | 3점 | 3점 | 3점 | 3점 | 4점 | 4점 | 4점 | ||||
수Ⅰ | 1. 지수함수와 로그함수 | 1. 지수 | ● |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
2. 로그 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ● |
|
|
|
|
|
| 1 | ||
3. 지수함수 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ● |
| 1 | ||
4. 로그함수 |
|
|
|
|
|
|
|
|
| ● |
|
|
|
|
|
|
|
|
|
|
|
| 1 | ||
2. 삼각함수 | 1. 삼각함수 |
|
| ● |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 | |
2. 삼각함수의 그래프 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| ● |
|
|
|
|
|
|
| 1 | ||
3. 삼각함수의 활용 |
|
|
|
|
|
|
|
|
|
|
| ● |
|
|
|
|
|
|
|
|
|
| 1 | ||
3. 수열 | 1. 등차수열과 등비수열 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| ● |
|
|
|
| 1 | |
2. 수열의 합 |
|
|
|
|
|
| ● |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 | ||
3. 수학적귀납법 |
|
|
|
|
|
|
|
| ● |
|
|
| ● |
|
|
|
|
|
|
|
|
| 2 | ||
수Ⅱ | 1. 극한과 연속 | 1. 함수의 극한 |
|
|
| ● |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
2. 함수의 연속 |
|
|
|
|
|
|
| ● |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 | ||
2. 미분 | 1. 미분계수와 도함수 |
|
|
|
| ● |
|
|
|
|
|
|
|
|
|
|
| ● |
|
|
|
|
| 2 | |
2. 도함수의 활용 |
|
|
|
|
|
|
|
|
|
|
|
|
| ● |
|
|
|
|
| ● |
| ● | 3 | ||
3. 적분 | 1. 부정적분 |
| ● |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 | |
2. 정적분 |
|
|
|
|
| ● |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 | ||
3. 정적분의 활용 |
|
|
|
|
|
|
|
|
|
| ● |
|
|
|
|
|
|
| ● |
|
| ● | 3 |
2022학년도 6월 모의고사 수학 영역 공통과목 분석
2022학년도 6월 모의고사 수학 영역 공통과목은 13, 14, 15, 21, 22번 문항에서 이전 평가원 모의고사와 다른 출제특징을 보였고, 세 가지 형태로 분류해 볼 수 있다.
(1) 13번, 21번 문항
공통과목 첫 시행인 6월 모의고사에서 가장 두드러진 특징은 13번, 21번 문항과 같이 [수Ⅰ]과목의 문항을 [수Ⅱ] 과목 문항과 같은 형태로 기술했다는 점이다.
먼저 13번 문항의 경우 [수Ⅰ- 3. 수열]을 이용하여 풀어야 하지만, 마치 주기함수의 특성을 파악하는 함수추론 문항으로 보여 학생들의 혼란을 자아냈다.
또한 21번 문항의 경우 실근, 중근, 허근에 대한 개념이해 [수학(상)] 와 [수Ⅰ- 1. 지수, 로그]을 통해 해결할 수 있지만 중근을 삼, 사중근으로 오해하거나 함수의 추론을 하기 위해 다양한 상황을 만들면 오히려 풀기 어려운 문항이었다.
(2) 15번 문항
15번 문항은 난이도 상급의 [수Ⅰ- 3. 수열] 문항이 나올 것으로 예상했으나 (2022예비시행 참고) 삼각함수를 함수적으로 분석하는 문항이 출제됐다. 더불어 [수학(상)]의‘근과 계수와의 관계’를 이용하여 (ㄷ)보기를 해결해야 한다는 점이 특징이었다.
(3) 14번, 22번 문항
14번 문항과 22번 문항은 전형적인 절댓값이 포함된 다항함수, 함수의 평행이동, 미분가능성 등을 이용한 [수Ⅱ-2, 3 미적분] 문항이다. 여전히 함수추론은 [수Ⅱ]의 가장 중요한 부분이라 할 수 있다.
2. 2022학년도 6월 모의고사 수학영역 선택과목 분석
선택과목은 전체적으로 평이하게 출제됐다. 전범위로 출제되는 9월 모의평가와 이전 출제된 2022학년도 예비시행을 비교하여 다음 호에 작성하겠다.
3. 이전 모의고사과 달라진 점과 대응방안은?
올해 선택과목 수학영역을 처음 겪는 고3 수험생 학생들과 작년까지 수학(가 형)과 수학(나 형)을 응시했던 n수생 모두에게 쉽지 않은 시험이었다. 그 이유를 세 가지로 들어 설명하겠다.
(1) 전체적인 밸런스 붕괴
이전 모의고사 | |
객관식 | 주관식 |
1번~21번 | 22번~30번 |
2022학년도 6월 모의고사 | |||
공통과목 | 선택과목 | ||
객관식 | 주관식 | 객관식 | 주관식 |
1번~15번 | 16번~22번 (20번부터 4점) | 23번~28번 | 29~30번 (4점) |
이전 모의고사는 객관식+주관식 형태로 단순해 학생들이 시험을 컨트롤하기 수월했다. 즉, 객관식, 주관식 모두 문항 번호가 뒤로 갈수록 난이도가 상승하는 구조였다. 따라서 쉬운 문항 먼저 해결하고 어려운 문항에 나머지 시간을 투자하는 방법이 학생들에게 익숙했었다. 하지만 이번 6월 모의고사는 그렇지 않았다. 객관식에서는 난이도가 이전보다 급격히 상승하고, 익숙하지 않은 문항 번호에 킬러가 있고 과목별 문항 수도 달라지다 보니 시험 자체에 익숙하지 않아 좌절을 한 학생들이 많았다.
무엇보다 시험 자체에 익숙해지는 방법을 익히고 연습하여 실력을 발휘할 수 있는 기반을 마련해야 한다.
(2) 공통과목(수Ⅰ, 수Ⅱ)의 중요도 증가
올해 6월 모의고사에서 선택과목보다 공통과목에서 변별력 있는 문항이 많이 출제되어 학생들이 상대적으로 선택과목에서의 시간을 확보하지 못했다. 올해 수능도 공통과목(수Ⅰ, 수Ⅱ)에서의 강세가 예상되며 이에 대한 철저한 대비가 필요하다.
(3) 문항 이해력 요구 증가
앞서 설명한 13번, 21번 문항은 다시 풀어보면 쉬우나 현장에서 맞이했을 때, 상당한 해석력을 요구한다. 수열, 지수와 같은 수Ⅰ범위의 문항을 수Ⅱ문항과 같이 서술해놨기 때문이다. 학생들은 모든 가능성을 열어두고 문항을 파악해야 할 필요가 있다. 올해는 이전보다 더 유연한 사고와 훈련이 필요하다.
4. 참고 해볼만한 평가원 기출문항
공통과목 | 11번 | 2019(나) 수능(홀) 17 2013(나) 수능(홀) 28 |
12번 | 2021(나) 9월 25 | |
14번 | 2011(가) 9월 16 2016(A) 수능(홀) 21 2022 예시문항 22 | |
15번 | 2022 예시문항 8 2021(가) 9월 21 | |
20번 | 2021(나) 수능(홀) 20 2017(나) 수능(홀) 20 | |
21번 | 2021(가) 6월 12 | |
22번 | 2020(나) 수능(홀) 12 2018(나) 9월 20 | |
선택과목 [확률과 통계] | 29번 | 2020(나) 6월 12 2021(나) 6월 16 |
30번 | 2019(가) 9월 15 2014(B) 9월 6 2010(나) 9월 12 | |
선택과목 [미적분] | 28번 | 2015(가) 수능(홀) 20 2019(가) 수능(홀) 18 |
29번 | 2016(가) 수능(홀) 21 2020(가) 6월 21 2020(가) 6월 30 | |
30번 | 2020(가) 수능(홀) 30 | |
선택과목 [기하] | 29번 | 2013(가) 6월 20 2013(가) 9월 26 2022 예시문항 29 |
30번 | 2011(가) 수능(홀) 22 2020(가) 6월 29 2018(가) 9월 19 |
출처 : 한국교육과정평가원
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
이사람은 ㅆㅂ 진짜 ㅋㅋㅋㅋ
-
꽤 성실했음뇨 제 트리 받으신 분들 맞팔 좀 아 다 했으려나
-
변태라느니 취향이 한결같다느니.. 왜 그러시는 걸까요? 동평 폐지된지 오래됐는데..
-
나빼고ㅠ다ㅜ놀러갓나
-
심심 0
사실나도일해야해
-
미친듯이 졸려서 자야겠다 다들 메리크리스마스
-
제가 한거라곤 다른 사람 트리에 두주순빈으로 닉 정하고 ㅎㅇ 단거밖에 없는데 다른...
-
이거괜찮나요?
-
흠...
-
올해는 일단 미연시 해야겠다
-
병신이야?
-
옯기범입니다 3
진심으로 쓴거 아니니까 화내지 마시고 좋은 하루 보내세용
-
강민철 질문 0
3학년 1학기때 언매수강함 메가패스 끊어서 강민철 커리만 타면 수능대비랑 내신대비...
-
그거 높은확률로 나였을거다.
-
재수를 결심하고 제 성적에 갈 수 있는 이름있는 학원 중에 종로학원을 알게 되었는데...
-
트리ㅇㅈ 보니 딱 알겠네
-
저 저격글은 지금 빨랑 안들어오면 내릴 생각 없습니다 2
온종일 아싸인척 기만하다가 느지막하게 들어올거면 저격 감수해야지 괘씸해 아주
-
목동 재수종합학원 추천 부탁드립니다!! (시대인재x) 0
안녕하세요 저는 재수를 결심한 고3입니다. 1월부터 재수종합학원을 다닐려고 부모님과...
-
낙지 구매9
-
비독원 문개정 문기정 3개 아직 교재 구매는 안했고 곧 할 생각인데 교재패스에...
-
1. 테-무에서 기존회원 신규회원 룰렛 이벤트함 2. 5만원 확정지급 링크 통해...
-
ㅅ발아
-
저는 처음에 진짜 저한테 하는 말인 줄 알았음…
-
예비 고3이고 고1때부터 모고보면 만년 4등급만 맞았습니다. 학원에서는 확통...
-
댓글이몇개달리는겨
-
애매애매하네
-
저는 이번에 이상하게 시간이 없길래 거의 못 썼어요 내년에는 짧더라도 더 많은분들...
-
순식간에 팔로우 엄청 늘어나네요ㅇㅇ
-
한 오백개는 넘을려나… 안해봐서 감을 못잡겠네
-
1. 일단 문제 시간 제한 없이 풀고 2. 지문과 선지를 어떻게 해설할지 미리...
-
생1생2 안 했는데 의대 들어가기 전에 해야할까여.? 0
고1 이후로 본적이 없어서 좀 해놔야 할 것 같음
-
자다 잠시 깼습니다 15
트리 감동적이네요
-
많이 못 써드려서 죄송함뇨 메리크리스마스!
-
쪽지로 하고 싶은 말 보내드릴게요 그리고 맞팔구
-
미쳤다 생각하고 10
3수생 과기원 합격했습니다! 수능 성적표에 국어 밀려써버린 걸 알고 나서 근...
-
기부니 좋아요 2
으헿헤헤헤헤헤 ㅎㅎ세
-
ㅇㅅ탕면은 머냐 4
안성탕면이랑 차이 잇음?
-
아 걍 맞팔하자 7
ㅇㅇ
-
전역하고 귀찮아서 방치해둠..
-
트리 감동이네요 0
나도 열심히 쓸 걸
-
의뱃.
-
안나니키레이닷타노니
-
애인에게 시간을 뺏기지 않고 크리스마스 내내 사랑하는 화1과 시간을 보낼 수...
-
1차 노예비 2차 노예비 3차 노예비 4차 예비 9번 제발 기적적으로 합격하면 좋겠다
-
저눈 피방가서 놀다가 저녁에 외식해요
-
오루비프사 4
트리에 프사묻는 산감이많길래...
-
빡침원탑 근데 저게 장난이 맞을까
-
식비포함해서 120이면 (간식 두번에 점심) 어떤거에요? 그냥 잇올 가는게 나으려나요 ㅜ
첫번째 댓글의 주인공이 되어보세요.