수학문제좀 풀어주세요 ㅜㅜ 수열극한하고 수열문제에요
게시글 주소: https://video.orbi.kr/0003682762
~~
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
문과면 메가패스 2
살 필요가 없지 않나요..?
-
김범준T 0
확통하는 문과 3등급이 듣기엔 어려운가요
-
고전시가 질문 5
제가 답을 고를때는 나열하는거같아서 기대감은 안드러났다고 생각했는데 답지에는...
-
27수능때 과탐 장례식이라 전례없는 핵폭탄과탐 내야되는데 국어까지 불로내긴 좀...
-
자러 갈까요 8
미적을 더 하고 싶기도 사실 한 페이지밖에 안 함뇨..
-
전전은 당연히안되는걸로알고 자전융힙이나 신소재화공쪽이요
-
이동준 강기원 0
예비고3이고 시대 둘다 신청 성공해서 갈수있는데 두분 병행하면 많이 빡셀까요?...
-
기본으로 4그릇 이상먹었고 아직도 카레 8그릇 먹은게 기억남 치킨 1마리 먹어도...
-
지옥2 보면서 느낀건데 유아인 연기는 진짜 대체불가인듯
-
아
-
다들내가많이좋아하는거알지 현실친구가없어서 난너희들밖에없어
-
왜 여자아이들이나오냐 ㅅㅂ 톰보이는 혁오아니냐?
-
고1때 경우의수 잘하긴 했지만 확통은 또 다른 영역이죠? 가르치고 싶어서 공부해보고 싶은데...
-
2주 전에는 1
2시에 자서 7시에 일어나고 하루종일 시발시발거리면서 공부할 체력이었는데 면접준비...
-
병원 가서 ct도 다 찍어봤는데 아무 문제 없다그랬고 한의원가서 한약짓고 공진당도...
-
약대 어디가요?
-
https://orbi.kr/00069878130/%EA%B5%AD%EC%96%B4%...
-
뭐가 더 도파민 폭발임? 수능날 60분컷 적백받고 40분 잠으로 능욕 vs 원하는 사람과 쓰리썸
-
ㅇㅇ?
-
한의대 선택과목 0
오로지 한의대만을 생각하고있습니다.. 일단 탐구는 무조권 사탐을 할것인데 수학은...
-
진짜 이거까지만 먹고 다이어트하는거어떰
-
논술 입실까지 7시간남았다
-
놓쳐서 아쉽네료
-
무조건 정상화 시킬거 같은데 메디컬학과들이 사탐을 반길리 없음
-
운동신경 ㅈ도 없어서 팔굽혀펴기랑 턱걸이밖에 할 줄 아는 거 밖에 없는데 구기...
-
투표좀요 0
어떨지 궁금하네여
-
들어올때 키오스크로 보고 59번자리 누가 선택안했길래 59번자리 내가...
-
용돈 땡겨받게 생겼네 아..
-
작수 미적 81점 백분위 93 올해 확통 81점 백분위 85
-
언매미적 과탐(1+2) 국수 99 영어1 과탐 백분위 92
-
할,멈도 이젠안.되는데,어떡해할까,요?
-
Ainsi bas la vida, Ainsi bas la vida 0
Ainsi bas la vida ainsi bas la vida
-
수학 19번 분명히 41 한 기억이 있는데 가채점표에는 31로 되어있음
-
제가 보기에 좀 꼴사나운 사람들은 오래 못가더라고요.. 부계정 50개 들고가서 고로시했거든요
-
ㅎㅎ
-
그것도 모르고 수2에서 어왜진동안나오지 이랬네..
-
옥린몽 옥루몽 등등이 비연계로 돌아다니겠구나..
-
그 누구도 그 원칙에서 벗어날 수 없고 따라서 언젠가는 너 또한 피비린내를 풍기게 될 것이다.
-
그러면 마음이 차분해짐 ㅇㅇ..
-
첫경험 썰 4
들어주셔서 감사합니다.
-
잘 이해가 안감 상대방과 합의 하에 쓴 게 아니라면 되게 상처받을지도 모른다고 생각
-
내일이면 제가 오르비를 가입한지 1년이 되는 날이네요. 4
응애 나 만0세 애기!!!!!!!
-
문이과 상관없어요
-
하..
-
비문학 문학 둘 다 상관없
-
오늘 화학수행평가봤는데 조를 짜서 실험하고 관련된보고서작성하는거였음 보고서는...
2번 ㄱ, ㄴ, ㄷ 다 맞는 건가요?
제 풀이
ㄱ. 1 2 3 4 0 1 2 3 4 0 합 20
ㄴ. 1 2, 3, ,,, (n-1), 0 (n을 n으로 나눈 나머지는 0) 합 n(n-1)/2
ㄷ. S_(mn+2m)-S_(mn)
=a_(mn+1)+a_(mn+2)+...+a_(mn+m-1)+a_(mn+m)
+a_(mn+m+1)+...+a_(mn+2m-1)+a_(mn+2m)
=1+2+...+(m-1)+0
+1+...+(m-1)+0=m(m-1)
ㄷ을 추가로 설명하자면
km+r(k는 자연수, r은 0≤r
1번은 x가 아니라 r이 무한대로 가는 상황이 아닌지?
답은 8이 나왔는데 맞는지..ㅎㅎ
제 풀이
그림은 그려보셨죠? 주어진 식을 만족하는 영역은
두 원의 넓이에서 두 원 내부 중 겹치는 부분을 뺀 넓이입니다.
그렇다면 이 넓이는 두 원의 넓이-2*(겹치는 부분)으로 구할 수 있는데요.
두 원의 넓이는 2pir²이므로 겹치는 부분의 넓이를 구해봅시다.
겹치는 부분은 x=1을 대칭으로 함을 알 수 있고(두 원의 공통현이 x=1이므로)
그 넓이는 정적분을 이용해 구할 수 있음을 알 수 있습니다.
겹치는 부분을 x=1을 기준으로 한 번, y=0을 기준으로 한 번 자릅니다.
네 부분의 넓이는 같으므로 오른쪽 윗부분 넓이를 구한 뒤 4배를 합니다.
오른쪽 윗부분에 해당하는 곡선의 방정식은 y=√(r²-x²)입니다.
그 넓이는 ∫(x=1 to r)√(r²-x²)dx입니다.
x=rsina(lal≤pi/2)로 치환하면, 정적분 식은
∫(a=k to pi/2)cos²ada=∫(a=k to pi/2)r²(1+2cos2a)/2da(단, sink=1/r)로 바뀝니다.
계산하면 r²pi/4-kr²/2-r²sin2k/4인데, sink=1/r에서 cosk=√(r²-1)/r,
sin2k=2√(r²-1)/r²이므로 정적분 식은
r²pi/4-kr²/2-√(r²-1)/2이 됩니다. 이것이 오른쪽 윗부분 넓이입니다.
이제 S(r)을 구해봅시다.
S(r)=두 원의 넓이-(2*겹치는 부분)=두 원의 넓이-8*(오른쪽 윗부분)
2pir²-8(r²pi/4-kr²/2-√(r²-1)/2)=4kr²+4√(r²-1)입니다.
즉 S(r)/r=4kr+4√(r²-1)/r입니다.
그런데 sink=1/r에서 0
문자도 많고 식도 길어서 난해하네요..도움이 됬길
아 완전감사해요!!! 답은 다 맞아요~
오타네요~ 제가 r을 x라고 써놨네요 ㅜㅜ
아 그런데 극한값 문제요~~ 2학년때 학교시험에나왔던건데 그때 수2 시험에서 나왔거든요~ 적분안쓰고는 못푸나요??
제가 말씀드린 오른쪽 윗부분 넓이를
부채꼴-직각삼각형(이정도로만 말해도 아시겠죠)으로 구할 수 있습니다.
지금 생각해보니..
부채꼴 넓이 구할 때 k가 나오는데(sink=1/r에서 각이 k이므로) sink