예시문항 문제 다들 기억남?? [22 예시 수학Ⅰ]
2022학년도 예시문항 수학Ⅰ 문제지.pdf
2022학년도 예시문항 수학Ⅰ MENTOR의 손풀이.pdf
안녕하세요. MENTOR 남현입니다!
오랜만에 문항 분석 칼럼을 들고 왔습니다. 지난번에 2021학년도 수능 수학의 수학Ⅰ 문항들을 리뷰했었죠!
오늘은 2022학년도 대학수학능력시험 예시문항 수학 영역에 등장한 수학Ⅰ 문항 중 4개를 선정해서 집중적으로 파헤쳐보려고 합니다.
주멘 모의고사 풀기 전에 예시문항으로 예열 좀 해보면 좋을 것 같습니다 :)
[지수와 로그]
가장 먼저 살펴볼 문제는 공통 10번입니다.
로그의 값이 자연수가 되도록 하는 조건을 찾는 문제였습니다. 제가 2021학년도 수능 칼럼에서도 다뤘던 유형입니다.
로그의 성질을 충분히 활용해서 침착하게 계산했다면 크게 틀릴 만한 포인트는 없었던 것 같습니다.
마지막에 a의 값의 곱을 처리할 때 본인이 얼마나 효율적으로 처리했는지, 더 간결하게 할 수는 없었는지 정도만 가볍게 짚어보면 좋을 것 같습니다!
[삼각함수]
다음으로 볼 문제는 21번에 등장한 삼각함수의 활용 문제입니다.
삼각함수의 활용 파트는 대부분의 학생들이 유력한 고난도 문제 후보로 생각하고 있을 것이고, 생각보다 이 파트에 약한 학생들이 많습니다.
도형 문제를 잘 다루려면 중학교 때 배웠던 기본적인 도형의 성질들을 잘 숙지하고 써먹어야 하는데, 기본적인 도형의 성질을 공부한 학생과 공부하지 않은 학생들 사이의 체감 난이도 격차가 꽤 컸을 법한 문제입니다.
이 문제에서도 중심각과 원주각 사이의 관계를 제대로 파악했다면 그리 어렵지는 않았을 것 같습니다.
게다가 이 문제는 사실 사인법칙이나 코사인법칙을 굳이 쓰지 않더라도 중학교 도형에 대한 기본기만 탄탄하다면 일반적인 삼각비와 피타고라스의 정리로도 풀어낼 수 있는 문제입니다.
(손해설 Sol 2 참고!!)
앞으로 등장할 많은 도형 문제에서 여러분의 발목을 잡는 것은 사인법칙이나 코사인법칙이 아니라 중학교 도형이 될 수도 있다는 거 항상 잊지 마시고 꼭 공부하시길 바랍니다!
[수열]
이제 수열에서 두 문제만 더 살펴보겠습니다. 먼저 20번!!
공차가 정수라는 조건에서 공차의 부호가 양수인지 음수인지 조사해야겠다는 생각을 했어야 합니다.
케이스를 나눠서 공차의 부호를 알아냈다면 조건에서 a4가 등차중항 0이라는 것을 확인하고, 합 조건을 이용해서 식 하나만 더 얻어내면 됩니다.
항상 우리를 고통스럽게 하는 절댓값은 부호 조사만 잘 했다면 자연스럽게 풀어지기 때문에 생각보다 크게 골치 아픈 부분은 아니었습니다.
정수 조건이나 절댓값 조건은 부호에 신경 써야 합니다. 특히 등차수열 특성상 다양한 문제에서 이러한 조건이 활용될 수 있기 때문에 이번 기회에 제대로 정리해두시길 바랍니다!
다음으로는 객관식 마지막 문항인 15번 문항입니다.
공통 과목 킬러 문제로 유력한 유형이죠! 수열의 귀납적 정의를 직접 관찰하고 파악해서 답을 찾는 문제였습니다.
2021학년도 수능 21번에서 나온 유형과 크게 다르진 않습니다. 이런 유형은 역시 직접 손으로 써가면서 규칙성을 파악해야 합니다.
이 문제는 쓸 게 조금 많다는 느낌도 들지만 a5 이후로는 규칙이 단순하기 때문에 2021학년도 수능 21번보다는 할 만했다는 생각이 듭니다.
100번째 항까지의 합을 물었지만 실제로 최대와 최소를 결정짓는 건 a1부터 a4까지이기 때문에 이 부분만 잘 캐치했다면 잘 풀어냈을 것이라는 생각이 듭니다.
시험지 구성 자체가 완전히 뒤집어지고 공개된 첫 공식 자료가 예시문항인 만큼 어떻게 보면 가장 믿을 만하고 퀄리티 높은 참고자료가 될 수 있겠지만, 또 다르게 생각해보면 첫 자료에 불과하기 때문에 예시문항의 난이도나 문제 유형에 집착하는 것은 좋지 않습니다.
앞으로 차례차례 공개될 저희 MENTOR와 주예지T의 콜라보 모의고사도 참고하시면서 본인의 부족한 부분을 점차 채워나가는 방향으로 꾸준하게만 공부하면 주위 입김에 휘둘리지 않고 좋은 결과 만들어낼 수 있을 겁니다.
아직 예시문항 수학Ⅱ, 확률과 통계, 미적분, 기하 문항들에 대한 분석 칼럼도 남아있으니 많은 관심 부탁드립니다!
-지난 게시글 바로가기-
주멘 모의고사 공개 일정 바로가기
2021학년도 수능 수학Ⅰ 바로가기
2021학년도 수능 수학Ⅱ 바로가기
2021학년도 수능 수학 확률과 통계 바로가기
2021학년도 수능 수학 미적분 바로가기
기하에 대하여 바로가기
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
수위 높은 장면은 안 나오겠지? 예전에 이런 장면 나온적 있어서 먼가 안 될거...
-
어떻게 예상 커트라인이 417 ㅋㅋㅋㅋㅋㅋㅋ
-
어어
-
촤하하하하핫!!극락이구나
-
전투휴무 줘라 0
이거 출근 어떻게 함ㅠㅠ
-
걍 자휴때림 0
ㅇㅅaㅇ 못가 ㅅㅂ
-
온라인으로 등급,표점 확인하는 건 폰으로 ㄱㄴ?
-
모닝여캐일러투척 16
애니는 안 보고 프사로 쓰는 사람들 보면 괘씸하거든요
-
사장님 0
저도 오늘 출근 하기 싫어요잉,,,,
-
얼버기 2
얼리 버드 기상
-
먹어도 되려나 소리때문에 흠.. 이정도는 오케이인가
-
학교 휴업하네 0
-
이번에 수1,수2 김범준T 듣는데, 스타팅블록2~5등급이 듣기에 좋다고 하시더라구요...
-
한국식 세는 나이로 25살에 교수. 남학생이 군대 갔다 왔다고 치면 4학년때 자신과...
-
승쫑인데 롤 10연패해서 밤새가지고 어떡하지 싶었는데 이런일이?
-
43이 되는 가능세계는 없겠지?? 아무리 높아도 42지??
-
돌아가는 분위기가 매우 흥미롭군요 정부가 의평원 무력화 하는걸 포기했네요? 그런데...
-
8일뒤성적표공개 0
시간빠르뇨
-
형등 급해요 0
신검 30분 지각할거같은데 괜찮음?
-
9시등교인데 10시 등교로 바뀜
-
강제얼버기 4
두시간자고기상
-
6시 기상할까 나눠서 6시반기상/6기기상은 오히려 수면패턴에 방해가 될지도
-
안돼 눈온다 1
살려줘
-
미적분 80 1
2등급 가능성 얼마나 있을까요?
-
필자는 매우졸림
-
화작 확통 생윤 윤사 24222 원점수 87 66 36 39 백분위 89 67 89...
-
축하해줘 13
히히
-
히히 첫 ktx 12
-
난 진촤 독서는 7
배경지식이 매우매우 중요하다고 생각함 배경지식을 풍부히 알고있는 상태로 지문을...
-
이유도 설명해주심 감사용
-
얼버기 12
속이ㅈ됐습니다
-
쿨
-
사람아니야
-
설레는 것이와요
-
얼리버드 파이팅 19
냉기가 느껴지네요 오늘 하루도 열공하세요~
-
오 2
-
ㅈㄱㄴ
-
얼버기 5
오늘두 즐거운 하루
-
기상 완료 오늘도 ㅍㅇㅌ
-
그 중 동부는 눈 쌓이면 이렇게 빨리 못 돌아다니겠죠 영화 보면 한 사흘은 집에...
-
모닝 질문 받음 6
고졸 일용직 걸그룹 마스터 야구 중독자 (32년 무관 팀 팬)
-
얼버기 11
겨울이니까 이정도면 얼리다
-
너무 일찍 왔다 5
역에서 20분째 기다리는중 앞으로 20분더 기다려야함
-
기도가 먹혔나 6
오늘 오전이랑 내일 오후에만 눈온다네 제발 오후 늦게 눈와라 제발
-
고려대, 지스트, 경희대, 동국대, 부산대, 서울대, 성균관대, 아주대 연세대,...
-
뭐지
-
밥을 0
지금 김밥을 먹을까 도착해서 부산에서 아침을 먹을까 10쯤도착예정인데
-
살말 0
21번 저 풀이 박승동 T가 유튜브에 찍어 올린 그 피타고라스 풀이인가요? 중학교 도형 지식만으로 푸시던데
박승동 선생님에 대해 잘 알지 못해서 잘은 모르겠지만 피타고라스 풀이는 맞습니다! 첨부 파일 확인하시면 보실 수 있으실거에요 :)
20번 문제
a9를 구하는 주관식이라
앙연히 공차는 양수라고 생각했었는데.. ㅋㅋㅋㅋㅋ
실전에선 그런 안목도 있으면 좋죠!!
예시문항 공통부분난이도는 어느정도엿나요?
개인적으로는 과하게 어렵지도 않았고 쉽지도 않았던 것 같다고 생각합니다! 최근 수능 난이도 기조와 비슷하다고 느꼈어요
나형기준이신가요?
제 기준을 물어보신거라면 가형 기준이 되겠지만 저는 개정 전 가형러라 큰 의미는 없을 것 같아요!
예시문항보다 어려울거라고 생각하면서 공부해두면 그런 기준과 무관하게 공통에서 손해볼 일은 없을 것 같아요!
개념 1번 익힌 사람인 전 2,4번이 다소 만만치는 않네요
1,3는 무난한 것 같아요 1번 평이 2번 쉬운 노가다
4번은 수열의 귀납법 문제 맞죠?
열심히 해서 23수능 수학 만점 get하러 갑니다
4번은 수열의 귀납법이라고 하기 보다는 수열의 귀납적 정의라고 하는 게 더 정확한 표현이기는 합니다 ㅎㅎ :)
그냥 제 생각이지만 20번 문제 a4=0인 걸 이용해서 시그마 식을 전개했을 때 a2+a6=a3+a5=0으로 날려버리고 a4=0이니까 a1=-3d, a2=-2d, a3=-d 이런 식으로 두고 d 부호 따져주면 음수일 땐 성립이 안 돼서 공차가 양수일 때 바로 5라고 나와서 이 방법도 괜찮은 거 같아욤