3차함수 문제 풀어보세요~^^
게시글 주소: https://video.orbi.kr/0002798437
작년에 직전모의고사에서 통계를 해보니 정답률 약 60%였습니다.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
교육부 "연세대 2027학년도 모집 인원 감축 가능…책임자 엄정조치" 1
2025학년도 수시 모집 논술 시험 문제가 유출돼 논란을 빚고 있는 연세대가 다음...
-
1. 인문계는 해당사항 없음 2. 자연계만 해당사항 있음 3. 1차 시험 응시자만...
-
둘다 ㅂㅅ같음
-
의미없는건둘째치고 질문 3개에 아니요 아니요 아니요는 사실상 ㄱㄴㄷ문제 선지에...
-
민지 무희 0
진짜 뒷북이긴 한데 한창 난리났을 때 공부하느라 바빠서 이제 봤네요 왤케이뿌심...
-
인강 책들 4
솔직히 너무 비쌈. 진짜 심한거 가틈, 욕 나올 정돈데 오르비에선 착하게 살아야되니까 욕은 안하겟음
-
고대유물 2 7
다들 보는 고려대 논술 안내문임
-
수능을 너무 말아서 할 과목이 없어요 그렇다고 수능을 다시 한번 보기에는 에바고...
-
형은 내 비타민이야 ㅎㅎ 이러면 스무 살짜리가 이등병 때 담배 피고 와서 나한테...
-
대학 면접 안가면 담임선생님이 제가 면접 안갔다는 사실을 아실 수 있나요?
-
고대유물 2 11
-
너무힘들어서 0
심장이랑명치에 칼꽂고싶어요
-
런하는거맞음? 가산5퍼에서
-
폭설 ㅅㅂ 2
학교안에 셔틀이랑 대중교통 다 못들어가게 해서 걸어가게 해놓고 휴강은 또 안해 ㅅㅂ...
-
고양이같은사람이좋 10
아
-
감기기운이 온다 4
마침 백수인데 집에서 쉬어야겠음요 럭키비키
-
텔그랑 낙지는 게속 돌리고 있긴 한데 표본분석이나 이런거 하기에 너무 처음 들어보는...
-
눈사람만들었어요 2
구라고 길가다 귀여워서 찍음
-
메가 사건터짐? 10
왜 불매함?어차피 안할거 다 알긴하는데 이유가 궁금하네
-
고대유물 발견! 10
그냥 고대 사진이긴 함
-
약속취소될 가능성 없음????
-
원래 환불 몇배로 해줬으면 돈 엄청 깨졌을텐데 논술2배로 뽑으니까 내년에 등록금으로...
-
몇달만에 재접했는데 길마가 되있음....왜 나한테 짬처리하는데
-
연논 vs 여행 0
4~10까지 여행 항공편, 숙소, 패스권 이미 지불
-
고대유물 발견! 10
이거 뭐냐
-
뻥임뇨
-
ㄴ첨가임뇨 0
사실 화작러라 잘 모름뇨
-
사수까지 해서 건대가는게 의미있을까
-
사람은 도대체 .... 뭐지다뇨
-
눈온다 0
첫눈이야 첫눈
-
1컷이 50이든 100이든 백분위가 같으면 최저 충족한 사람의 수는 같은 것 아닌가요?
-
대성마이맥 수학 기출 강의 추천 부탁드리고 싶습니다! 0
계속 찾아보고 있는데 애매해서리... 각 강사분들 기출문제집 문항수도 혹시 아시는 분 있으실까요?!
-
진짜모름
-
정시원서 컨설팅 안 받아주시나
-
https://www.instagram.com/reel/DC3WsRchI-N/?igs...
-
대신 평생 검정고시나 수능 응시 불가능
-
상남자행동
-
외고? 예고 다니냐고 물어보셨는데 아뇨 일반고 다닙니다. 라고 했어요ㅠㅠㅠ 실격 될까요
-
진짜로 음란한목적으로 쪽지거는 넘들이 있음,,,,,
-
나 경희대, 한양대, 서강대, 중앙대 논술 쓴 것도 합격 가능성 높아지는 건가?...
-
논술최저러들 컷팅좀하면좋으니 근데도 85에서 갈리는 공통적게 틀린 그래서...
-
알려주세요
-
거기는 하나도 못가고 지방대 옴
-
사실 저 키 177임 10
-
생각해보니 영광의 순간이 아닌 순간이 없었다.
-
22학년도부터 역대 언매 최저 정답률 문제도 23수능에서 나왔는데 정작 평균은...
-
최적조교떨… 3
솔직히사문은수능때개처말아먹어서탈락ㅇㅈ 근데정법은 47>48>50인데 나왜떨어졋냐고…
3번인가요??
정답입니다.^^
근데 저 궁금한게 저 ㄷ을 구할 때요.. f(x)=x^3-x^2-x+1이 나오는데 이 식에서는 f(1)=0인데 'f(1)<0이면' 될려면 x축을 위로 올리는 건가요?? 그래서 f(x)가 전형적인 삼차함수의 개형인데 근이 2개인 곳에서 x축을 위로 올리면 근이 3개일 수도 1개일 수도 있어서 그런 건가요??
ㄷ선지의 핵심을 잘 짚어내셨네요. 함수 f(x)를 들어 올리면 1,2,3개의 근을 모두 가질수 있기때문에 틀린 것인데
올바른 풀이는
ㄱ.에서 f(1)=f(-1)이죠? 그러고, f '(1)=0입니다. 따라서 f(x)=(x-1)^2(x+1)+a(단, a는 실수)
라고 놓고 상수 a의 값의 변화에 따라서 ㄷ선지를 해석하면 됩니다.
3번인가요?
정답입니다.^^
좋은문제 감사합니다 ^^
33
정답입니다^^
2번인가요? 낚인거 같은데 뭔지 모르겠네요
오답입니다. 함수의 극한에 대해서 좀 더 생각해보시길 바랍니다.^^
으악 잘못썼네요.
1번인가요......?
으악..ㅠㅠ 오답이에요.. ㄱ은 함수의 극한에 관한 선지. ㄴ, ㄷ은 삼차함수에 관한 선지입니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
3번요 ㅋㅋ f(x) = (x-1)^2(x+1)+f(1) 나오네요 ㅋ
정답입니다. 모범답안입니다.^^
1번?..
아 제 수학 좀 해야겠다.....
오답입니다.^^;;
조건에서 f 프라임 1이 0이라는거 말고 얻어낼 수 있는게 뭔가요 ㅠㅠ?
그게 있어야 풀릴거같은데 ㅠㅠ
ㄱ조건에 모두 답이 있습니다.
힌트를 드리자면, f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다
3번??
정답입니다^^
수리 캐허접인데 풀어보니 3번나오는데, 틀렸죠?
맞았어요 ^^
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수)
임을 이용해서 풀었다면 모범답안입니다.
f(x)=(x-1)^2(x+1)+k 로 하긴 했는데
첨에 f(x)=(x-1)(x+1)(x-a)+k 로 놓고 미분후 1대입해서야
a가 1임을 알아내서..
웬만한 분들은 걍 f '(1)=0 보고 바로 식 나오시는듯 하군요 ㅠㅠ
님처럼 푸신분들도 많아요^^;; 앞으로 잘알아두시고 써먹으시면 되는거에요 ㅎㅎ
계산 안하고 바로 생각해내는 사고 과정좀 알려주실수 있나요
ㄷ 풀때 그래프를 그려보면서 뒤늦게 자동으로 알게 되긴 하지만요..
삼차함수에서 도함수의 함수값이 0이라는것은 극솟값 혹은 극댓값을 의미합니다. 그 극값을 k라고 합시다. 그러면, f(1)=k, f(-1)=k 이죠? 즉 f(1)의 값과 f(-1)의 값이 같다는걸 유추할수 있습니다.
그럼 가장 쉬운 예로 k=0이라고 칩시다. 그러면 함수 f(x)에서 f(1)의 값은 x축에 접한 형태가 될것 입니다. 그리고, f(1)은 극값이므로 중근을 갖겠네요. 따라서 f(x)=(x-1)^2(x+1) 라고 유추할수 있습니다.
*) 왜 x축에 접하는 극값이 중근을 갖느냐?
2차 함수 y=(x-1)^2을 생각해보시길 바랍니다.
흠냐 답 ㄱ,ㄴ인가요?
정답입니다.^^
이과 문제로 내기에는 넘 쉬운것 같고 문과 문제로 내면 딱이겠네요~ ㅎㅎ
그래서 작년 SHC모의고사 (나)형에 출제됬던 문제입니다.^^;;
5번
오답입니다.^^
4번? 맞으면 ㄴ이 왜 틀린지 설명좀 해주실수 있을까요?
정답은 ㄱ,ㄴ이구요
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
5번 맞나요
오답입니다^^;;
ㅠㅠ 힌트까지 주셨는데 개형 못찾았네요.. ㅠㅠ
중근 형태인지 극점 두개 인지 어떻게 판별하죠 ?...
중근형태인지 판별이라..
이런것입니다. 어떤 삼차함수 f(x)가 x=0에서 극솟값 1을 갖는다고 가정합시다.
그러면 함수 f(x)-1은 x=0에서 x축에 닿는 형태가 되겠지요?
이렇게 "닿는 형태"(느슨하게 말하여) 일때 중근이라고 유추할수 있습니다. (수학적으로 엄밀한 것이 아닙니다. 수능에는 이렇게 생각하면 상관없습니다.)
만약 x=0에서 그래프가 x축을 아래에서 위로 혹은 위에서 아래로 뚫고 올라갔다고 칩시다. 그러면 삼차함수 f(x)-1=x(ax^2+bx+c)로 방정식을 쓸수 있습니다. 물론, f(x)-1=x^3일수도 있구요.
*) 여기서 중요한 것. "닿는 형태" -> 2차, 4차 등의 짝수차항 다항식을 포함
ex) f(x)=x^2(x-2)^2
"뚫고 지나가는 형태" -> 1차, 3차 등의 홀수차항 다항식
ex) f(x)=x(x-1)^3
보통 수능은 3차, 심해봤자 4차함수가 나오는 점을 감안하시구... 왜 그런가 궁금하면 직접 그래프를 그려보세요.(네이버에 그래프 그리는 프로그램 쳐서 나오는것 하나 받아서 수식 입력하세요)
극점 2개인 것은 판별한다기 보단, 위에서 방정식을 만들어서 그래프를 그리다보면 자연스럽게 알수 있는 부분입니다. 다로 팁을 드리기가 애매하네요잉...
3번맞나요 ? 귓방망이님 책출간언제하시나용?ㅠ
아직 인쇄중입니다. 생각보다 오래걸리네요ㅠㅠ 기다려주신만큼 좋은 문제질로 보답하겠습니다^^
3번 맞나요??
정답입니다.^^
5번이 아닌가요? 그럼... 3번인가보네요...
모범답안은
f(1)=f(-1)이고, f '(1)=0 이므로 f(x)=(x-1)^2(x+1)+a (단, a는 상수) 입니다.
따라서 ㄴ참, ㄷ은 a값에 따라서 1,2,3개의 실근을 가질수 있으므로 거짓입니다.
ㄷ이 조금만 생각을 더했으면 1,2개 였을수도 있다는 생각을 못했네요 ㅋ 문제질 좋으시네요!
분수식의 극한이 극한값을 가진다는 사실에서 분모가 0으로 수렴하므로 분자도 0으로 수렴합니다.
따라서 ㄱ은 옳은 보기입니다.
또한 로피탈의 정리에 의해 f`(1)=0이고 f(x)는 삼차항의 계수가 1인 삼차함수이므로 보기 ㄱ과 함께 정리하면
f(x)=x^3-x^2-x+c입니다. (단, c는 임의의 상수)
따라서 ㄴ도 옳은 보기입니다.
그리고 f(x)는 x=-1/3일 때 극댓값을 가지므로 f(-1/3)=c+5/27로
f(x)가 세 개의 실근을 가질 조건은 c>-5/27입니다. 따라서 ㄷ은 틀린 보기가 됩니다.
그러므로 정답은 3번 ㄱ,ㄴ이 됩니다.
답은 3번!!
3번인가요??