1/x 적분질문이요
게시글 주소: https://video.orbi.kr/0002774093
함수1/x에서 x가 양의무한일때 함수값은0으로수렴하잖아요
근데x가 무한일때 적분값은 구할수없어요?
수열에서도 0으로 수렴하는 수열의 합은 존재한다고 되잇는데
적분이 작은 조각들의 넓이의 합이니까 조각이 0으로수렴하믄 합을 구할수잇어야되는거 아닌가요?
구분구적법으로 구할때 1/x도 x가 무한대로가믄 넓이의1/n조각인 함수값x밑변(1/n)이 0으로 수렴하지않아요??
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
그 정시접수는 온라인으로 하는거 아닌가? 어떤식으로 되는지 감이 안잡히네 학교가서 쓰는거임뭐임?
-
김범준 현우진 0
예비 고3이고 이번수능 공통 15 20 22 틀렸는데 김범준 따라갈만한가요??둘중...
-
물리 생멱 0
대학다니면서 재수할껀데 공대다니는데 내신때 화생지를했거든요 근데 공대갈껀데 물리를...
-
작년 한양대 수리논술 쉬운편이었나요?? 오전거푸는데 어렵다고 소문난거에비해 너무...
-
언매 94-97점 분들 메가 백분위 표점 어떻게 나오나요? 3
저는 공통 언매 1틀 96이고 133/98 이네요 어디까지가 98컷일지 궁금해서 여쭤봅니다
-
오르비에 어떤 분의 예전 풀이 보다 막혀서 질문 드립니다.. 중력끄기 기출에...
-
안녕하세요 Crux 컨설팅 환동입니다. 수능을 보신 여러분들 고생 많으셨습니다....
-
65663인뎅 ㅜ 문과 여붕이에요
-
예비 25학번 의대생 님들 내년에 입학하자마자 휴학할 거임?? 1
어떡하실 거임?? 증원 혜택받아서 입학한 의대생들도 선배가 시키니까 동참할까??...
-
좀 아쉽네요ㅠ 0
미적 어떻게 30번 푸는지는 알았는데 시간이 없어서 못 풀었네요ㅠ한번 더 하면 의대...
-
나꼬 레전드 2
개예쁨
-
건국대 빼고 다 막는데 건국대 입결이 타 수의대보다 높은거 감안하면 과탐 해야겟죠?
-
미적 3틀 89 0
1뜰까요?
-
어느게 더 어려울까
-
성공하더라도 대학은 2027년에 간다는거잖아..? 와 ㅁㅊ
-
17 18 20 풀어서 맞췄는데 8 9 13번 틀림
-
위상수학에 대해 잘 알지 못하는 사람도, ‘위상동형‘의 개념에 대해서는 아는 경우가...
-
3-2 기말고사 3
찍고 자진 않을 건데 챙기긴 해야겠죠? 그냥 3-2 중간때처럼 전날치기할라하는데...
-
영어가 생각보다 타격이 없구나
-
넵
-
지각 하고 죄송합니다 안 했다고 예의 없다 하는데 부모가 니 포기 했다 하는거는 예의 있는건가 흠
-
수능이 끝난 후, 가채점을 통해 자신의 성적을 분석하고 전략적으로 지원 대학과 모집...
-
ㅈㄱㄴ
-
대략적인 개강일이 궁금해요
-
연애하고싶은데 어디가서해요?
-
이제 현역되는 고2인데 수학땜에 고민입니다.이번 모의수능에서 22.28.29.30...
-
근데 요즘 FM 악습이라고 잘 안 시킴 ㅠㅠ 학생회는 자주 함 무적해병 화이팅...
-
이거 아니었으면 3합 4 확정으로 발뻗잠 하는 건데 하.. 가채점표만 잘못 옮긴...
-
99점...
-
차단 해야지 6
1년 만에 차단.
-
에이 씨발 재수해서 간 고려댄데 삼수망해서 삼수고려대됐는데 좆같네 진짜 사수...
-
대학 못감 1
앙 기모띠
-
N제에서도 못볼정도로 어려웟나
-
명문대 옯붕이들에게 차은우의 껍데기를 줄테니 초졸로 살라고 하면 다들 바꿀수있을까
-
뉴런은 23, 24 때 들어서 심특 들으려다가 김범준도 좋다던데
-
담임쌤 피셜 2
이번에 대구지역 수능 가채점 결과 보니까 애들 최저 충족률 상태가 말이 아니다
-
고속 1
고속 대신 돌려주실분 계시나요? 경기권,지거국 원점수기준 화작 63 확통 80 영어...
-
올해 수능(국수영 사과탐)이 2~3년 전보다 쉬운게 맞나요? 1
언론 분석 보니 그렇다고들 해서요. 특히 수학 과학은 예년 2~3년전보다 절대적인...
-
고속성장 소신 1
소신(노란색~연한 초록색) 정도면 써볼만한 가능성인가요? 건동홍은 적정이고 성대,...
-
지인들 커피 한 잔씩 돌리고 강제로 풀게 시키는중 ㅋㅋ 일단 2025학년도 수능 친...
-
착하게 살게요 ㅠ
-
이 시험이 어떻게 1컷 47… 세상이 날 두고 몰카를 하나
-
일단 가지고 있는게 좋겠죠?? ㄹㅇ 짐정리 하다가 버릴뻔
-
오른 만큼 내려가고 내린 만큼 오르는 듯
-
대구경북 지역인재 있는데 혹시 어느 정도까지 가능할까여 라인 봐주실 분 계신가요
-
도서관이 좋아요 0
편안해짐 기분이
-
어떻게 신청하는 걸까요?
-
맞팔ㄱㄱ 8
대신 똥글을 견디셔야합니다
원하시는 답인지는 모르겠지만 ㅠㅠ ... n이 무한대일 때 시그마 k=1에서 n까지 k분의 1, 즉 1+(1/2)+(1/3)+(1/4)+......+(1/n)은 수렴이 아닌 발산을 합니다.
다음과 같이 증명할 수 있습니다.
1+(1/2)+(1/3)+(1/4)+(1/5)+(1/6)+(1/7)+(1/8)+......+(1/n) > 1+(1/2)+(1/4)+(1/4)+(1/8)+(1/8)+(1/8)+(1/8)+....... = 1+(1/2)+(1/2)+(1/2)+.....(발산)
부등호 오른쪽의 값이 발산하기 때문에 자연스럽게 왼쪽의 합도 발산하게 됩니다.
구분구적법에서 (1/n) x (1/n) (n으로나눈 밑변 x n번째함수값=높이)니까 n번째 작은한조각의 넓이는 n제곱분의 1이되지않나요? 그때도 저 급수가 발산하나요?
별거아닌데 너무궁금해서ㅎ
감사합니다
잘못생각하시는 부분이 있네요.. 1/n 등분해서 k번째 함수값이 높이가 되니깐 (1 / n)*(1 / k) 이여야지요.
n제곱분의 1 합의 급수는 수렴합니다. 정확한 값이 6분의 파이(...)였던 걸로 기억하네요.
적분중에 이상적분이라고 하는것이 있습니다..
1/x를 무한대까지 적분을 할때에는 1/x를 a부터 k까지의 적분값을 구한후, k를 극한값을 취해서 무한대로 보내버리면 됩니다.
1/x의 a부터 k까지 적분을 해보면 lnk-lna이고 여기서 k를 무한대로 보내면 lnk-lna는 무한대로 발산해버리므로
1/x의 무한때까지의 적분값은 존재하지 않습니다.
대학 교과과정인 적분 판정법으로 쉽게 증명 할 수 있습니다.
증명은 생략하고 결론만 말하자면 1/x 의 무한급수는 발산합니다.
일반화 하면 무한급수 1/(x)^n에서, n이 1보다 작거나 같으면 발산, 1보다 크면 수렴합니다.
이것을 P-급수 판정법이라고 말합니다.