일반청의미 [447559] · MS 2013 · 쪽지

2018-06-10 17:55:32
조회수 7,403

공부할 때 필수적인 3가지 연결.

게시글 주소: https://video.orbi.kr/00017403068

일반청의미입니다. 그냥 개념파는 사람입니다. 


개념을 어떻게 정리해야하는지, 그리고 남은기간동안 실전모의고사를 풀 때, 어떻게 공부해야할지 여쭤보셔서 글씁니다.


이 글을 보시고, 충분히 개념과 예전의 문제들을 정리해주시길 바랍니다.




공부를 한 이후에는 그 공부한 내용을 정리해야합니다. 그 때 필요한 것이 배운 것들의 연결입니다.


목차를 통한 공부의 장점은 개념 사이의 연결을 보기 쉽도록 되어있다는 것입니다.




일반적인 시험에서 필요한 연결은 세가지입니다.



1. 개념과 개념 사이의 연결. - 개념 사이의 공통점과 차이점을 파악하고 정리한다.

2. 개념과 문제 사이의 연결. - 실제의 문제에서 어떤 개념이 어떻게 쓰이는지 파악한다.

3. 문제와 문제 사이의 연결. - 문제들 사이의 공통점을 파악하고 정리한다.




첫 번째는 개념과 개념 사이의 연결입니다.

단언컨대, 공통점과 차이점을 이용해 정리하는 것은 가장 유용한 정리방법입니다.

어떤 묶음이 가진 공통적인 특징으로 그 묶음을 정의하고, 차이점으로 각각의 개별적인 특징과 성격에 대해 생각해보는 것. 

이것은 모든 공부에 적용할 수 있는 기본적인 방법입니다..


 

수학과목의 개념공부를 생각해봅시다.


미적분 1과 미적분 2에서 배우는 내용은 무엇일까요?



미적분 1은 함수의 극한과 연속, 미분과 적분을 배웁니다.


미적분 2에서는 지수, 로그함수와 삼각함수, 그리고 미분법 이계도함수, 그리고 적분법을 배우죠.


여기서 공통점은 무엇일까요? 바로


함수를 다룬다는 점.


입니다.


좌표평면에 나타낼 수 있는 함수를 다루는 과목이 미적분입니다.


그렇다면 차이점은 무엇일까요? 우리는 미적분 1에서는 다항함수에 대한 내용만 배웁니다.


미적분 2에서는 더욱 복잡하고 어려운 함수를 배우게 됩니다. 어찌보면 미분하기 쉽지 않은 함수들을 배우게되지요.


어려운 함수의 극한을 배우면 도함수도 극한을 통해 구할 수 있게 됩니다.


그렇지만 적분은 미분의 거꾸로입니다. 미분은 공식이라도 있지, 적분은 공식도 없어요. 더 어렵겠죠.


즉, 매우 어려운 적분을 배운다는 것입니다!


매우 어려운 적분문제를 계산하기 위해서 우리는 적분법을 배울것입니다.


어떻게 적분할 수 있는지에 대한 스킬부분을 많이 배울거에요. 적분은 미분 거꾸로이기 때문에


미분법또한 배우게 됩니다. 결국 차이점은 간단한 다항함수인지, 어려운 함수인지가 되겠네요.


그렇다면 미적분과 기하와 벡터는 어떻게 다를까? 이런 식으로 공통점과 차이점을 찾아가야합니다.






공통점과 차이점을 이용해서 개념을 정리하고, 개념이 왜 필요한지, 어떻게 필요한지 정리합니다.

이렇게 정리할 때 생소한 문제가 나와도 어떤 부분의 개념을 써야할지 대략적으로 알 수 있어요.


이렇게 정리하기에는 목차를 통한 정리를 해야합니다. 그 연결이 보여야합니다. 물론 교과서수준에서요.





두 번째는 개념과 문제 사이의 연결입니다.



문제에 나온 표현에서 어떤 특징을 가진 개념을 써야할지 유추합니다..

세부적인 특징을 기억한다면, 문제에 써야할 개념을 확실하게 알 수 있습니다.

앞에서 정리한 개념을 바탕으로 실제에 적용해보아야 합니다.




다음 문제를 봅시다.



g(x)가 실수 전체에서 미분가능하도록 하는 자연수의 값의 합을 구하라고 합니다.


미분계수와 도함수 단원에서 미분가능성에 대한 정의가 나와요.



이 정의에 따라서 생각해보면, 절댓값 기호를 포함한 함수는 미분계수가 존재하지 않을 수 있습니다.

절댓값 안에 있는 수가 음수일 때, 마이너스 부호를 붙이게 되므로 그 때 함수식이 바뀌게 됩니다.

함수 식이 바뀌는 순간 미분 불가능할 수 있기 때문에, 우리는 그 순간을 찾아야해요.


또한 시그마 기호가 있습니다. 시그마 기호의 정의는 수열의 합입니다.



수열의 정의는 수의 나열입니다. 수열의 규칙을 찾는 이유는, 수를 계속 나열하기 위해서입니다.


앞에서의 개념 연결을 잘 했다면, 왜 등차수열과 등비수열을 먼저 배우는지에 대한 생각도 했어야합니다.




당연히, 간단한 규칙부터 먼저 소개하는 것입니다. 그래야 어려운 규칙도 파악할 수 있으니까요.





그렇다면, 이 문제에 있는 수열의 합도 나열해보면서 생각해봐야합니다.

이 문제의 경우는 나열해보면서 생각하면 규칙이 보여요. 그것을 통해 문제를 해결할 수 있습니다.

문제에 제시된 설명과 개념을 바로 연결해봐야 합니다. 그 때 개념으로 문제를 해결할 힘이 길러집니다.

물론, 이 연결도 당연히 개념과 문제의 공통점을 발견하면서 이루어진다고 볼 수 있습니다.





기본은 괜히 기본이 아닙니다. 하지만 기본만 잡다보면 실제의 문제를 해결할 수 없습니다.

실제에 기본을 적용하는 연습을 할 때 비로소 실력이 늘 수 있습니다..

쓰지 않는 지식은 지식이라 할 수 없습니다. 어떻게 기본을 실제에 적용해야할지 고민해야합니다..

어디에 적용해야할지, 왜 적용해야할지를 계속 고민해보세요.. 그 근거와 이유는 반드시 있습니다.




세 번째는 문제와 문제 사이의 연결입니다.



기존 문제를 해결한 경험을 바탕으로 새로운 문제에 대한 해결방향을 생각합니다.

기본 개념은 변하지 않습니다. 즉, 기존에 해결한 문제들이 반드시 존재합니다.

그것을 다른 문제와 연결지어 정리해주세요. 그러면서 개념의 쓰임이 더욱 명확해질 것입니다.

여기에서 실모의 가치가 생깁니다. 학습 목적의 실전모의고사 훈련에서는 이 과정이 필수입니다.


 

다음 문제를 봅시다.


2017학년도 9월 평가원 수학 B형 30번.



이해가 되나요? 위에 있는 2015학년도 수능 문제와 연결이 되어야합니다.

이계도함수가 존재하려면, 도함수가 존재해야합니다.

또한, 도함수가 존재하려면 절댓값에 의해 함수가 바뀌는 부분에서 미분 가능해야합니다.

절댓값 기호가 두 개 존재하며, 안쪽에 있는 절댓값에 의해 함수가 먼저 바뀝니다.

함수가 바뀌는 곳을 잘 찾아주면, 반드시 이 문제를 풀 수 있습니다.



특히 시험에서 기출문제는 빠질 수 없는 자료입니다. 

이제 기출문제를 풀 때 다른 문제와 연결해봅시다.

교과서 문제와 다른 기출문제들과 연결하고 공통으로 사용된 개념으로 다시 돌아가봅시다..




다시 재언급하자면, 

우리가 해야하는 연결은 3가지입니다.


1. 개념과 개념 사이의 연결.

2. 개념과 문제 사이의 연결.

3. 문제와 문제 사이의 연결.



이 3가지를 항상 반복한다면, 문제에 적용할 수 있는 기본실력을 얻게 될 것입니다.

비단 시험공부 뿐만이 아닙니다. 계속 사용해야 하는 지식이라면 계속 적용하고 정리해야합니다.

이렇게 정리한 이후라면, 한층 더 실제에 적용할 수 있는 이론을 얻을 수 있을 것입니다.



아마, 이 연결은 실제의 학문에서 이렇게 연결되리라 생각합니다.


1. 이론과 이론 사이의 연결.

2. 이론과 실제 사이의 연결.

3. 실제와 실제 사이의 연결.



즉, 경험과 이론은 항상 동시에 가야한다는 것입니다.


책만 읽고서는 아무것도 바꿀 수 없습니다. 그렇다고 행동만으로는 깊이가 없습니다.


이 두가지가 조화가 되어야한다는 것은 동서양의 고전에도 나오는 이야기입니다.



이제, 연결하면서 부족한 점을 계속 발견할 것입니다.


부족한 부분을 충실히 채우고 고민하면서 해결하시면 반드시 완벽해질 수 있을 것입니다.




p.s.0) 다음에는 이전칼럼 리뉴얼이 아닌, 평가원에 대한 분석을 들고올게요..ㅠㅠ

시험 끝날때가 20일이라서.. 어쩔수가 없습니다.


화이팅할게요! 여러분도 화이팅하세요!


P.S. 1) 바쁩니다. 혹시 제게 질문이 있다면, 쪽지 혹은 제 페이지, 혹은 제 개인 연락처(?)

로 보내주시면 어떻게든 최대한 답변드리겠습니다. 지금 기말고사라서요..


후 살고싶습니다. 살고싶어요. 살려주세요.


P.S. 2) 혹시라도 형편이 어려운 학생이 있다면, 언제든 연락주시길 바랍니다.

비록 학생의 신분으로 많은 지원은 어렵습니다. 

정말 정말 정말 조금만 도움을 드릴겁니다. 하지만 제가 낭비하는 시간을 모두 모을수는 있습니다.


어렵습니다. 제가 직업을 가진 사람이었다면, 기꺼이 모든 이들에게 좀 더 나은 지원을 해드리겠으나

그렇지 않은점은 제가 모자라기 때문입니다. 미안합니다. 아주 작은 도움이겠으나 최대한 돕겠습니다.



0 XDK (+0)

  1. 유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.