[황금손] 빈칸문제공략 22분
빈칸문제 공략하기.pdf
빈칸문제 8문.pdf
빈칸문제 8문 답만있어요.pdf
안녕하세요
황금손쌤이에요
D-15인데 한 문제라도 더 맞힐 수 있도록
영상을 가지고 왔습니다.
주제는 ‘빈칸문제 공략’이구용
‘빈칸문제’ 어렵다고 쪽지가 막 오더라구요.
이 영상보고 4점문제 맞히고 오세용.
빈칸문제 공략 포인트알려드릴게요.
핵심
① 모르는 증명 문제가 나온다 하더라도, 빈칸 전후의 흐름을 파악해서풀 수 있다. ★★
② n에 대한 식이 나와서 문제가 잘 이해되지 않는 다면, n=1, 2, 3, 대입해서 문제를 이해해본다.
③ an을 구하라고 하는 자체가 일반화가 된다는 뜻이므로, n=1, 2, 3, 대입해서 규칙을 찾아낸다. ★
④ 등호 전 후는 상황이 같다. ★
첨부파일 다운받아서 영상이랑 같이 보세요!!!!!
관련문제도 첨부했으니까 풀어보시구요.
그럼 20000 갈게용.
0 XDK (+0)
유익한 글을 읽었다면 작성자에게 XDK를 선물하세요.
-
문자가 안오는걸 보니 떨어진 것 같네요 그래도 멘탈은 안털렸으니까 더더욱 열심히하자 끝까지 파이팅
-
혜윰 시즌1 0
이거..답이 1번이라늨데 왜죠? ㅜ 하향식이 틀린거아닌거 아님?? 당연히...
-
메모하면서 지문 푸나요 아니면 밑줄 치면서 푸나요 아니면 속발음하면서 푸나요
-
총정리과제 7 개밀렸는데 유기하고 8 집중적으로 파도 될까요? 아니면 무리해서라도...
-
EBS 만점마무리 봉투 모고 팩트로 어느정도 난이도임? 1
이번 종로도 87이고 계속 사설에서 2 후반에 서식중인데 이건 하나밖에 안틀렸더라...
-
오늘은 공부 슬럼프와 관련된 글을 한 번 써볼까합니다. 슬럼프란 무엇일까요? 보통...
-
큰거 한번 싸면 보통 2~3일뒤에 신호가 오는데 수능 전전날 변비약 먹고 수능 전날...
-
요새 사회 쉽게 나와서 약간 중요성이 떨어진 감도 있는데 이감 풀어보신 분들 사회는...
-
예전에 믿문이 되게 별로였었고 오르비 여론도 썩 좋은편은 아니라 안듣고있었는데......
-
국수영 점수 왔다갔다 거리는게 너무 불안하고 슬픔
-
국어 독서론까지 다 풀면 배가 ㅈㄴ 아프지 에반데 긴장되는건 아닌데
-
저는 물투화투 선택했습니다
-
연계 공부 1도 안했는데 괜찮나요 현대시2번 읽고 고전소설 인물관계도만 외우고...
-
뭐 살까요? 막판 하나 풀려는데
-
문학 어려워용 현대시에서만 3개틀림...
-
쉽지 않아요. 시간 재니깐 67분 걸림 (ㅈ됨) 여기서는 그냥 스포니깐 넘어가실...
-
이정재, 래몽래인 경영권 분쟁에서 승리…정우성과 이사회 입성 1
임시주총서 이정재 측 안건 모두 가결 드라마 재벌집 막내아들, 성균관스캔들 등의...
-
나만그래?
-
아침에일어나서 10시에한번 점심먹고 바로 그 이후론 ㄱㅊ음 ㅋㅋ 재수생 되니 맞추기쉽네
-
그날이 단 1주일 남았구나
-
월훈 문의당기 그 지문인데 분명히 상반기에 강의 들었던거같은데 어디에서 다룬건지...
-
그냥 풀어보는게 나을까요? 직전이라 멘탈에 이상이 생길수 있을 것 같아서요..
-
내신은 8학군 2점대 극초반이고 정시파이턴데 설의 설치 같은 곳은 세특을 따로...
-
수특은 KBS듣는중인데 수완 어카지 책 사놨는데 못풀거같음.... 어카지 수특도 다 안끝났는데 ㄹㅇ
-
실모안치고 일희일비중 막 자신감 개떨어졌다가 자신감 갑자기 생기고 그럼 ㅋㅋㅋ
-
설맞이 풀어보고 싶은데 지금 시기에 푸는거 에바임? 2
설맞이 아카이브나 모의고사 풀어보고 싶은데 지금 사서 풀어도 안늦을까요?
-
사문 질문 2
지속적인 경기 불황으로 일자리가 감소하자 독거노인의 생계형 범죄가 늘어나는 경우는...
-
2합4 영어사문 0
최저 맞춰야하는데 지금 사문 2 영어 2 생각하고 있어요.. 영어가 안정 1은 항상...
-
국어 실모 0
이감6-10 key모 상상 9,10 네 개있는데 오늘 키모 풀고 두 개 더 풀...
-
뭐들을까요
-
진짜 국밥에 당면만 있는 순대를 넣나요? 그 쫜득거리는
-
무슨강의 몇강인지좀알려주세여ㅠ
-
5000부 판매돌파 지구과학 30분의기적 파이널 총정리집을 소개합니다. (현재...
-
멱집합 이진수 개어려운데.. 이해가 안 됨
-
고전소설 비연계 고전시가 비연계 극 연계 때리는게? 이감의 깊은 뜻인가
-
메가 대성 2
둘 다 사는거 ㄱㅊ은 선택이겠죠 한지 사문인데 이기상이 너무 듣고싶어요 원래 대성만 하는데
-
긴장되는거 쫄리는거 전혀 없고 그냥 결과가 어떻든 빨리 끝났으면 좋겠음 당장...
-
엄마가 나에 대한 기대를 품게 만들지만 않았어도 내 10대는 행복했을텐데
-
쿠팡 좋네 0
ㄹㅇ 신세카인데....
-
ㄴ 선지에서 왕안석이 틀린 이유를 어떻게 판다해야 하나요? 216해설강의를 보면...
-
가채점표 안쓸듯 2
가채점표 겁나 사놨는데 걍 수험표에 표 그려서 바로 갈기는게 시간 덜걸리는거같음...
-
로피탈 질문 4
이거 맞나여??
-
이 다음에 뭐 푸시나요?
-
소설도 막 미친듯이 못알아먹게 모르는 단어 남발 아니면 어느정도 읽히는데 고전시가나...
-
조퇴하고 병결해야하나
올비 입문이라 빈칸보고 영어신줄
수학샘이어요♥
사스가 골든핸드...Goat
댓 고마워영 ♥♥
감사함니다누님 ㅎㅎ(선생님)
네 ♥ 영상 잘보시고 문제도 잘 풀어보세요
히히
좋은 자료 넘나 감사합니당ㅎㅎㅅ
ㅋㅋㅋ
사진보고 깜놀햇어요!ㅋㅋ
짱 빠르심ㅎㅎㅎㅎ
감사해요!
넹~~~잘쓰세용ㅎㅎㅎ
우왕 선생님 안녕하세요 고3 인강수강생입니다! 코어 맨틀까지 꼼꼼히, 알려주신 인강활용법, 필기법 따라하며 공부했어요 정말 감사합니다♡그런데도 여전히 수학이 조금 힘이드네요ㅜㅜ엉엉 그 중 넘 약한 확통빈칸문제ㅠㅠ 이건 꼭 추가로 맞춰올게요 꼭!!! 수능 끝나고 꼭 봬용 선생님♡♡♡
좋은 자료,강의 올려주셔서 감사해요♡♡
안녕하세용~~♥
오티부터 잘 따라오셧군요ㅎㅎㅎ
남은 기간 초조해하지말고 정리잘햇음 좋겟어요
선생님으로부터 공지 보고 정리잘하시구
자신감잃지 마시고 마지막까지 화이팅~~~~~~~♥
와 진짜 필요했던..오르비의 순기능 내일 당장각잡고해볼게요
ㅎㅎ
네 영상잘보시고 8문제도 잘풀어보세영♥
내일 파일 받아서 보려하는데 안지우실꺼죠오??
ㅎㅎㅎ
안지웁니당!!
킬러문항까지는 아니지만 최근 확률부분에서 좀 어렵게 나오는 파트를 집중공략해주셔서 감사합니다.
네
도움이 됬으면 합니당.
우왕 쌤 뿌염 얼마주기로 하셔요?
6주에 1번이용
뿌염이 제일 귀찮아요........
ㅠㅠㅠㅠㅠ
와 오늘 가형 9평 20번 풀다가 빈칸 (나) 보고 살짝 막혔었는데 이렇게 들어보니 좋네요 감사합니다
도움됬으니 다행이에요!!
이번수능에서도 꼭 맞히고 오세요!
평소에 비킬러중에서
빈칸이 잴 까다로웠는데.. 감사합니다 ㅎㅎ
이번 수능에서도 꼭 맞히고 오세용
응원합니당
입술 괜찮으세요?
ㅎㅎㅎㅎ 많이 나졌어여!!!
머리그냥 평범한 사람이 평가원 기출만으로
수능날 가형 1등급 따내는거 불가능한거맞죠?
만약 가능하다고 생각하신다면 어떻게 해야하는건가요?
전 정말 분석도 열심히 했고 여러번 반복해서 풀었는데 1등급 안나오더라고요ㅠ
흠..기출분석하고 반복까지 했는데 자꾸 안된다면
실모푸시는거 권합니다..
똑같은 문제 반복하는 것이 별도움이 안되는 사람도 있어요..
ㅠㅠ
그런데...실모는평가원과 지향점이 달라서 독이 될 수도 있지 않을까요?? ㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠㅠ
독이 될 수도 있으니 학생들이 실모가 좋다 나쁘다 하는 거겠죠?
좋은 실모 풀수록(평가원과 흡사한) 도움이 되는 건 당연할 거구요.
하지만 제가볼때 님의 문제점은... 새로운문제를 볼 때 당황을 하는 것이 큰 것 같아서 실모를 풀어보라는 거에요. 새로운문제를 본다고 해도 알고있는 개념을 적용하는 연습을 계속 해야할것같아요
빈칸문제에 대한 정리가 된 것 같아요 좋은자료 감사합니다 ^^* 수능때 빈칸 발상이 바로 떠올랐으면 좋겠어요 ㅎㅎ
히힛
네 고마워요
근데 프로필이 저네요???? ㅋㅋㅋㅋ *^^*
개인적인 팬입니다~ ^^ 물론 카페에서 번호물어본건 제가 아니에요 ^^
8문제 해설 필요하신분은 http://class.orbi.kr/class/1229/
http://class.orbi.kr/class/1229/
http://class.orbi.kr/class/1229/
http://class.orbi.kr/class/1229/
14.1강 무료로 열어놨으니
들으시면 됩니다.
선생님! 감사합니다
그런데 2번문제에 가 부분 질문드릴게요
N명의 사람은 서로 구별돠고 다른건데
왜 중복순열이 아니라 중복조합이 되는지 궁금합니다!
문제에 선택 하는거라고 나와있어서 중복조합으로 풀었는데
곰곰히 생각해보니까 의문이들어서요
눈이 정말 사슴같구 예쁘세요!
안녕하세용 ㅎ
n명이 빈상자를 고르는데 똑같이 생긴 공을 ABC중 2상자에 넣고 나머지 빈상자가 남는데요, 1번이 빈상자 A를 고르거나 2번이 빈상자 A를 고르거나 구별이 안되고 똑같이 A입니다. 여기를 이해하셔야 하구요.
그래서 A상자 개수+ B상자 개수 +C상자 개수=n 수식이 성립하고 3Hn이죠
만약에 1번이 A를 고른상황이랑 2번이 A를 고른 상황이 구별이 된다면
똑같은 A가 아니라 A1, A2 로 구별이 될 거구요.
A+B+C=n 수식성립이 안됩니다. A가 서로 달라지니 똑같은 A가 아니라서 A의 개수로 볼 수가 없는거에요.
저 수식이 성립하는지로 구별하면 좋을 것 같네요.